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In order to eliminate or minimize the numerical error by shock waves due to grid
distribution in multidimensional hypersonic flows, a new grid reconstruction scheme,
the shock-aligned grid technique (SAGT), is proposed. The error due to shock waves
in a non-shock-aligned grid system magnifies in proportion to the Mach number
and propagates on the downstream side of the flow field to contaminate sensitive
aerodynamic coefficients or flow quantities. SAGT, combined with the AUSMPW+
scheme proposed in Part | of the present work, not only provides an accurate solution
but also reduces the grid dependency of a numerical scheme without a substantial
increase in computational cost. In addition, SAGT is robust and flexible enough
to deal with complex flow problems involving shock interaction and reflection and
equilibrium and nonequilibrium effects. Extensive numerical tests from a hypersonic
blunt body flow to hypersonic nonequilibrium flows validate the accuracy, efficiency,
robustness, and convergence characteristics of SAGFoo1 Elsevier Science

1. INTRODUCTION

One of the distinct features in computing hypersonic aerodynamics is that it invol
severe viscous dissipation in boundary layers and strong shock waves, which leac
the stiff gradient of flow properties or the reaction of air molecules. This imposes a hi
degree of accuracy, robustness, and efficiency in designing a numerical flux function
time integration technique. For example, numerical dissipation has to be minimized to
degree that it does not produce unphysical numerical oscillations. At the same time,
frequency error around stiff gradient regions should be effectively damped out to av
compromising solution accuracy or convergence characteristics.

For accurate computations of hypersonic flows, it is essential to examine primary fact
that influence solution behavior critically. The present work focuses on the errors cause
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a spatial discretization scheme and grid distribution. The first issue which was dealt witt
Part | of the present work, proposed a AUSMPW+ scheme for determining the numeri
flux function.

The treatment ofthe error by grid distribution is to be investigated in the present paper. (
of the fundamental reasons for error near strong shocks in multidimensional flows is clos
related to grid distribution since the position of shock discontinuity is usually not consider
in generating a grid system. The error in the region of a shock wave is generally magni
in proportion to the Mach number or the distance between shock position and cell interfe
It continuously propagates on the downstream side of a shock, causing solution inaccu
and slow convergence. In addition, it may seriously affect sensitive aerodynamic coefficie
or higher order flow quantities, such as surface heating rate, vorticity, and turbulence e
viscosity [1]. This can be easily observed in cases of shock/shock interaction or flo
involving physical oscillations. Thus the removal or minimization of the error due to a gr
system is essential in computing hypersonic flow problems accurately.

Traditional methods to treat the error include mesh adaptation and a shock-fitting te
nigues. The mesh adaptation method is to redistribute or increase the number of grid po
based on a solution in a given grid system, around the region where a more accurate sol
is required. This approach may reduce the error but does not eliminate it completely. As
from the problem of the design of a robust error indicator, convergence characteristics
the time step limit from the CFL condition may get worse as grid size becomes smal
In the shock-fitting technique, a shock wave is treated as a boundary, and a solutior
the downstream side of a shock is determined using the Rankine—Hugoniot relation s
that it is compatible with other parts of a solution. Since a shock does not spread eve
multidimensional flows, the error caused by a shock can be avoided and a higher ol
scheme can be readily applied to obtain accurate results. However, this approach is
robust enough to be implemented in complex flow situations. For example, shock/shi
interaction, shock reflection, complicated internal flow problems such as supersonic no:
flows, and equilibrium and nonequilibrium flows are among the important test cases
which this approach cannot be applied.

Therefore, a fundamental way to eliminate or reduce the shock-induced error, within
framework of shock-capturing philosophy, is to generate a grid system that reflects sh
position as accurately as possible. In other words, local grids need to be exactly alig
with shock waves in a systematic way. At the same time, the numerical scheme adoj
should support the grid system in a way that allows it to capture normal or oblique shc
waves over one cell interface in the shock-aligned grid system. Unless both conditions
satisfied, the error cannot be eliminated. The AUSMPW+ scheme, proposed in Part | of
present work, satisfies the requirements for shock capturing. In the present paper, a
grid reconstruction technique, the shock-aligned grid technique (SAGT), is proposed.

SAGT is a method to align cell interfaces of interest with shock wauwsmatically In a
general grid system, itis very difficult to exactly align a shock with cell interfaces by simp
moving grid lines. It may be possible, only in a simple case, by a user’s iterative efforts. F
problems involving several shock waves, however, itis impossible to achieve a complete
alignment with such brute-force attempts. The shock-fitting technique is also partially av:
able since it cannot be applied to complicated flows involving shock/shock interaction
nonequilibrium effects. On the other hand, SAGT is robust and flexible enough to overco
those difficulties without a significant increase in computational cost. Using SAGT col
bined with AUSMPW+, accurate solutions can be obtained with minimal numerical erro
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The present paper is organized as follows. Following the introduction, a brief desci
tion on the governing equations and numerical discretizations is given in Section 2.
Section 3 the procedure of SAGT is explained in detail. Extensive test cases of SAGT v
AUSMPWH+ ranging from shock intersection and reflection to hypersonic equilibrium al
nonequilibrium flows are presented in Section 4 to validate accuracy, efficiency, robustn
and convergence characteristics. Finally, conclusions based on the results of the pre
sections are drawn.

2. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATIONS

The governing equations and spatial and temporal discretizations are the same as i
Part | of the present work. Thus, they are briefly introduced in this section.

The two-dimensional, axisymmetric Navier—Stokes equations in conservative form
used as

3Q 9E 9F [9E, dF,
99, %, —< + )+s,

at | ax | ay (1)
y X oy

whereS represents the source term due to thermochemical phenomena or axisymm
Three types of gases are considered according to the reaction effects of air molecules
For a calorically perfect gas or equilibrium air molecules, the equation of state is giv

by
~ ~ 1 2 2
p=(7/—1)pe=(y—1)p(et—§(u +v)), 2

wherey is 1.4 for a calorically perfect gas and is calculated by the curve-fitted data
Refs. [2, 3] for equilibrium air. For nonequilibrium air, the contribution of each molecule
species is included to yield

p=3 pnT, @)

whereRis the universal gas constant (8.314 kJ/kwple- K) and Mg is the molecular weight
of each species. All the effects of chemical species and vibrational energy are consid
using the five-species ¢ON2, NO, O, N) chemical reaction model in the temperature rang
of 2500 K< T <9000 K [4, 5]. Then, the final flow and flux vectors are given by
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wheree, =Utyy + vTxy — Ox, fy =Utyxy+v1yy — 0y and the subscripts (1-5) stand for chem-
ical speices. The four-temperature model is mainly used to test the robustness of SAGT!
AUSMPW-+ unless it is mentioned specifically. For a calorically perfect gas or equilibriu
air, all the species and vibrational energy equations are omitted and Eqgs. (4) become
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For a spatial discretization, AUSMPW+ is advocated as a baseline scheme because
accuracy, robustness, computational efficiency, and convergence characteristics (see
of the present work for its validation). The property of AUSMPW+ that can capture a sho
wave through one cell interface is prerequisite for the implementation of SAGT. The fl
function of AUSMPW+ can be summarized as

Fio= Mtcl/fI’L + Mﬁcl/z‘I’R + (P PL + PgPR), (6)
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where the pressure-based weighting functiemand f_ g, are given by

3
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with ps = P[" pL + Pg prand wherep;, py) are pressures in the transversal direction witt
respect to a cell interface, which is explained in detail in Part I. The interpolation functio
for the split Mach number and pressure of AUSMPW+ at a cell interface are given by

+i(M+1)? M|=<1
M*E = 9)
s(M£[M]), [M]>1,
IME1D22FEM)£aM(M2-1)2, M| <1
3 FM) £ aM( )%, IMI =1,
Pi|a = (10)
(1 £ sign(M)), IM| > 1,
where 0< « < 3/16.
The Mach number on each cell side is defined as
]
MLr= —R (11)
C1/2

wherecy,; is the speed of sound at a cell interface. For SAG K should be formulated
such that it can support the capturing of a shock through one cell interface. In orde
satisfy this, the speed of sound in AUSMPWH+ is designed as follows:

1
Q) E(UL +UgR) > 0 cyp = c2/max(|U.], cs),
(12)

o1
(i) SUL+Ur) <0 cip= cZ/max(|Ugl, Cs).

The speed of sounds, is formulated from the conservation laws normal to an obliqu
shock as

L —=D/vpL — (PR — 1)/)7R/0R>0'5 (13)
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where Hnorma = 0.5 x (Hotal L — 0.5 x V2 + Higtar — 0.5 x V3) and the subscripts
(L, R) stand for the left and right side quantities across a cell interface.

For a higher order extension, a MUSCL (monotone upstream-centered scheme for ¢
servation laws) approach based on primitive variables is adopted.

As atemporal integration, the governing equations are discretized by the backward E
method, and the Jacobian matrices are inverted approximately by an AF-ADI or LU-S¢
scheme. The AF-ADI scheme is used for a calorically perfect gas and an equilibrium ¢
In a nonequilibrium gas, the LU-SGS scheme is adopted for the efficient calculation of
flux Jacobian and matrix inversion.

3. SHOCK-ALIGNED GRID TECHNIQUE

Itis important to eliminate or minimize the error due to a grid system for accurate comg
tations of hypersonic flows because the error or numerical instability generally increase
proportion to the Mach number. This can be easily seen in non-shock-aligned grids whict
not take into account positions of physical discontinuities. Even with most accurate schel
that can capture a shock discontinuity through one cell interface in a shock-aligned ¢
system, such as Roe’s FDS or some AUSM-type schemes, large errors behind shocl
oscillatory behavior can be easily observed when they are applied to non-shock-alig
grids. Moreover, negative properties may be frequently obtained in severe test cases.
way to improve these situations, a grid system should reflect positions of physical sh
discontinuities as exactly as possible. Through a shock-aligned grid system, a shock v
can be captured with minimal numerical errors.

The SAGT is a method of grid reconstruction that considers positions of physical disc
tinuities obtained from an initial converged solution in the original non-shock-aligned gric
The topology of the initial structured grids is changed locally in a way that cell interfaces
aligned with shock discontinuitieutomatically Under the assumption that a humerical
scheme has the capability of capturing a shock discontinuity without numerical errors «
that an initial solution is sufficiently converged, SAGT determines the shock position ve
accurately and minimizes the error caused by inaccurate grid distribution in the regior
shock waves. This advantage is more conspicuous in hypersonic flow computations s
the error across a shock wave is quite significant. In the case of a blunt body problem wt
only one bow shock exists, it may be possible to align local cell interfaces with a shc
by a user’s experience, though complete alignment is difficult. However, in more comg
cated situations such as the generation or intersection of several shocks, it is impos:
to construct priori a shock-aligned grid system. By implementing SAGT systematically
however, a shock-aligned grid system can be easily generated from initial grids anc
accurate solution with minimal numerical errors can be obtained.

3.1. Requirements for SAGT

In order for SAGT to be readily applicable, a numerical scheme adopted should sati
the following two conditions.

(i) An oblique shock as well as a normal shock should be captured withardgell
interface if it is aligned with cell interfaces.

(ii) A numerical scheme should maintain a high level of robustness in calculating t
shock region.
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The first condition is needed because SAGT assumes that shock discontinuities are cap
through only one cell interface after successful implementation. Shock capturing with
cell interface plays a key role as the barometer for checking the convergence of sh
position. The second condition is necessary for the stable convergence of shock posi
Unless a scheme satisfies the second condition, negative properties can be easily prot
owing to temporary numerical error introduced by the change of grid topology in the proc
of aligning the shock with the grid.

There are several schemes to satisfy the first condition, including AUSM+, Roe’s FL
and AUSMPW+. AUSM+ with the speed of sound in Eqgs. (12) and (13) is able to captt
shocks without numerical error even for reacting gas flows. Moreover, it can overco
numerical instability due to the abrupt change of grid topology. However, it shows osc
latory phenomena which take much more computational time in the convergence of sh
position. Roe’s FDS, which has a numerical dissipation matrix that becomes zero at
sonic point, also captures shocks without numerical dissipation. Unfortunately, it does
survive the instability. According to the authors’ experience, AUSMPW+ is the most a
propriate scheme for the implementation of SAGT. Like AUSM+, AUSMPW+ capture
shocks without numerical error and it is robust enough to overcome the instability cau
by shocks. In addition, it does not show any oscillatory behavior, which leads to the f
convergence of shock position.

3.2. Procedure of SAGT

Figure 1 shows the brief procedure of SAGT. In a non-shock-aligned grid system
shock is usually captured over the grid points with different grid index numbers. As sho
in Fig. 1d, a numerical shock is located at cell interfaces, and large error is introduce
the grid points where grid indexes change. The error in this region is usually more than
order of magnitude larger compared to that in other regions, and it increases in propor
to the Mach number. Moreover, it propagates on the downstream side and compromise
accuracy of a computed solution, as indicated in Fig. 1d. With a lower Mach number
does not cause a serious problem. In hypersonic flows, however, the error is large en
to contaminate the downstream flow field behind shocks. The main purpose of SAGT i
increase solution accuracy by aligning local grids with shocks. From Fig. 1cit can be ea
seen that SAGT yields much more accurate results.

The SAGT is composed of the following three main steps:

Step 1. Calculation of Shock Position—Calculate shock position from an initial co
verged solution in a given grid system.

Step 2. Reconstruction of Grid System—Change the topology of local grids such t
local cell interfaces are aligned with the calculated shock position in Step 1.

Step 3. Convergence of Solution—Obtain a converged solution iteratively in a sho
aligned grid system.

The detailed flowchart is given in Fig. 2.

3.2.1. Step 1: Calculation of Shock Position

a. Search forthe region of stiff pressure gradienthe region of local maximum pressure
is determined for the detection of shock position in Step 1.c. In a simple case of a sir
shock, we first search a cell interface index in jhdirection (normal to the wall) that has the
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FIG. 1. Comparison of shock-aligned grids with non-shock-aligned grids.

local maximum pressure differendgy j+1 — pi |, with thei-index (parallel to the wall)
fixed. And, a set of indexes,(j) is tagged as temporal shock front indexes (TSFI). TSF
for several shocks can be obtained similarly. With a giéndex, j-indexes are tagged
if the pressure difference is greater than a threshold value, which is determined by s
fraction of maximum pressure difference in the computational domain.jTihdexes are
then rearranged according to the magnitude of the pressure differences. For example
assumed that there are five temporal shock front indexes for a iginelex:

TSFI1,i) =7, TSFK2,i) =12, TSFI3,i) =8,
TSFI4,i) = 13, TSFI5,i) = 4.

(14)

If the difference of thel' SFI, |TSFIn, i) — TSFKn', i)|, is equal to one, both indexes are
considered to represent the same shock. Otherwise, they are assumed to indicate diff
shocks. In this case, the first and the third, and the second and the fourth, indexes repr
the same shock, respectively. As a result, the number of shocks is three and the T

are
TSFKL,i) =12  TSFI2,i)=7  TSFI3,i) =4, (15)

for a giveni-index. By applying the same procedure forialhdexes, the TSFI are com-
pletely determined.
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FIG. 2. Flowchart of shock-aligned grid technique.
Figure 3a shows the TSFI with dash-dot lines as

TSFI1,1) = 2, TSFI1, 2) = 2, TSFI(1,3) =3,

(16)
TSFI(1,4) =3, TSFI(1,5) = 4.
It can be seen that the value of tiendex is changed at= 3 and 5, where a lot of error
is inevitably induced. The error should be carefully treated to obtain accurate results si
the amount is significant, which will be mentioned in detail in Step 2.c.

b. Decision ofthe range of shock wave# shock is commonly captured through several
cell interfaces due to numerical dissipation in a non-shock-aligned grid system. Thus
range of a shock can be assumed frpm m — 1 to j + n for a giveni-index as shown in
Fig. 4, wherej is the temporal shock front index determined in Step 1.a. Then, the range
a shock is specified by comparing pressure differences between the two neighboring pc
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FIG. 3. (a) Search of temporal shock front indexes and interpolation of shock-aligned grid points (Step
(b) Search of shock front indexes, which is a setj éhdexes nearest to calculated shock positions (Step 2)
(c) Movement of two end points of shock front indexes onto shock-aligned grid points (Step 2).

Whenp; > pj_1,
Pj+n+1 — Pj+n
———>d , 17
P — P Pmax a7
pj—m—l - pj—m—2
> dpPmax 18
Pj — Pj-1 Pnax (18)

F3r2 51§ g2 3 302 31§ 1 2 43

FIG. 4. Calculation of shock position. (a) Before shock detection; (b) after shock detection.
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whered pmax is the maximum allowable pressure difference. In a coarse grid system
is commonly 0.1, and in a dense grid system, it is 0.01. As it decreases, more accu
results can be obtained though shock position converges slowly. The valuesnofn for
each index are determined by applying Eqgs. (17) and (18) to the whole rangerafex.
For an oblique shockn or n is usually four or fivejm or n is one or two for a normal
shock. After the complete implementation of SAGTandn become zero, meaning that
a shock is captured through one cell interface. In case of several shocks, care shoul
taken so that the range of one shock does not include the TSFI of the other shocks. O
wise, significant error is induced in calculating shock position in Step 1.c, and the solut
does not converge. Thus timeh shock range of the indaxshould satisfy the following
constraint:

j—m-1>TSFn—1,i)+1, (19)
j+n>TSFkn+1,i). (20)

c¢. Calculation of shock position.Assuming that a shock is eventually captured througt
one cell interface as shown in Fig. 4b, shock position is estimated by

D Ad@ =D PAXd by, (21)

k k

where Ax, is the distance between théh and the(k + 1)th cell interface. If ared is
o AXj,  is obtained from Eq. (21). Whep; > pj_1,

k=j+n k=j—1 k=j+n
_ Zkzj_m_1pkAXk|(a) — Pss Zkzj_m_1AXk|<b) - pbszk:j AXk|(b)
(Pos — Prs) AX;

i

. (22

forl <i < imax Pfsisthe pressurein front of a shock apgl the pressure behind a shock.
Thus the estimated shock position is the geometric center of the shock region. The v
of |a| = &, «?)Y/? is the barometer to check the convergence of shock positidj[If
becomes zero, the shock position is completely converged.

In the stagnation region of a blunt body, there are gradients of flow properties cau
by physical compression processes even after a shock. Thus the range of a shock ne
be carefully determined so that it does not interfere with the region of physical compr
sion. This is achieved by modifying the pressure behind a shock dgifger anddpmin,
where

d Poutter = Pj+n — pbs, Pj+n+2 — Pj+n+1 >0,
Pos — Pts Pj+n+1 — Pj+n
N o (23)
d Poutfer = Pj+n+1 pbs’ Pj+n+2 — Pj+n+1 -0
Pos — Pts Pj+n+1 — Pj+n

and wherepjn41 is the pressure in the cell next to the shock range. Theyis modified
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as

(Pjtn +dPoutter Prs) Pisni2 = Pitns1 -
1+ dpoutter n> 0’ Pj+n+1— Pj+n  — 0’

(Pj+nt1+ dpoutter- Prs) Pj+n+2 — Pj+nt1
1+ dpouffer n>0, Pj+n+1— Pj+n <0,

Pos = ( +d ) (24)
Pj+1 + AdPmin - Pj-1 _ Pj+1—Pj )
1+ dpmin ’ n= 07 Pj — Pj-1 < dpmm’
P, elsewhere
Pts = Pj-m-1, (25)

whered pmin < dputer < dPmax - d Pmin IS @ Minimum threshold value for the pressure differ-
ence d pyuirer andd piin give a buffer zone to accelerate the convergence of shock positic
In a coarse grid systerd pmin is commonly 0.02, whereas in a dense grid system it is 0.00!

d poutrer IS given as
d n)uﬁer - 0.75 . d prmn + 025 . d pmax. (26)
When the flow behind the shock range is compressed again, that is,

2 — Pianid
Pj+n+ Pj+n+ -0,
Pj+n+1 — Pj+n

d poutier andd pimin €xclude the possibility thabys is overestimated. It should be noted that
pressure behind a shock is temporary until shock position is completely converged. O
it is converged, however, it is equal to the pressurpg at

d. Determination of shock-aligned grid pointsThe purpose of this step is to obtain
shock-aligned grid points based on the calculated shock position. From the result of Step
the location of a shock-aligned grid point is interpolated from center points of neighbori
shock positions (see Fig. 3a and 3b). In this step, the position of interpolated shock-alig
grid points should be completely consistent with the constraint of Eq. (21). Otherwise, |
center point of the shock position after interpolation, which is now the center point of tl
two shock-aligned grid points, is different from the center point before interpolation. /£
a result, significant error can be incurred since a shock will be eventually placed alc
shock-aligned grid points that are determined by interpolation.

Special care needs to be taken when there is a curvature of a shock, such as w
bow shock, as shown in Fig. 5&p.; indicates the center of shock position for a given
i-index. In this case, the slope 6. ;+1, Sp.i) is different from that of 6., Sp.i—1).

If the shock-aligned grid pointsS(@.1, Sp) are determined by the linear interpolation of
(Sp.i+1, Sp.i, Sp.i-1), it does not satisfy the constraint of Eq. (21), as shown in Fig. 5t
Since the shock will be eventually located along the grid poiBg.(, Sp), it leads to

a substantial amount of error. Thus the location of the interpolated grid points sho
be modified to satisfy Eq. (21) as follows. First, they are assumed to be determined by
arbitrary interpolation method as shown in Fig. 5a. Thép(;, Sp) are moved to the final
interpolated grid points§d, Si_, ), as shown in Fig. 5b, to compensate for the differenct
between the center pointSp.; and A:

(27)

p-(Spi—B)= pi<8r§+1+8q_ B)-

2
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FIG. 5. (a) Effect of shock curvature. (b) Interpolation of shock-aligned grid points.
Then
S S
Spi = M (28)
2
Thus we have
SH_1+2SH + SH,1 = 2(SR.i-1 + SR, (29)

for2 < i < imax— 1. Equation (29) forms a tri-diagonal matrix that can be solved implicitly
Unfortunately, if the grid topology changes abruptly, that|ig| has a large value, the
accurate solution of Eq. (29) may not be obtained. Thus the diagonal dominance is enfo
to Eqg. (29) by adding the linear interpolation equation:

05
llll
2

SH_1 + (2+ «l°®) SH + SH,, = (2+ ><8n,i_1 +Spi).  (30)

As aresult, Eqg. (21) is satisfied sinfe| becomes zero after the complete convergence c
shock position. The condition for the boundary grid points is

SH = 15Sp — 055, SH max= 1.5 max — 0.5 max_1. (31)

After finishing Step 1, shock-aligned grid points and shock position are complete
determined.
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3.2.2. Step 2: Reconstruction of Grid System

a. Search and determination of shock front indexe&®hock front indexes are defined as
a set of indexes for which cell interfaces should be aligned with shock discontinuities. Tt
consist of the cell interface indexes nearest the calculated shock position that are obta
in the previous Step 1 (see Fig. 3b). It should be noted that the TSFI in Step 1 may
be the same as the shock front indexes; ibf Eq. (22) is greater than 0.5. After SAGT
is successfully applied, the line formed by shock front cell interfaces directly represent
shock discontinuity. Shock front indexes contain the information

SFIn, i) = |, (32)

wheren indicates thenth shock discontinuity. Equation (32) means that tiie shock
discontinuity is located on the cell interfage j). In the case of several shocks, such as
a shock intersection problem,is more than two for a giveirindex. Figure 3b shows
the shock front indexes with dash-dash lines, and these are seen to be different from
TSFI.

b. Readjustment of shock front indexeb1 order to obtain good quality grids, it is
required that neighboring shock front cell interfaces should not be separated more than
grid size, meaning that

ISFI(n, i 4+ 1) — SFIn, i) < 1. (33)

In cells of high aspect ratio, however, Eq. (33) is violated. Then, unlike the usual case
Fig. 1a, more than three grid points can be merged into one shock-aligned grid point. £
result, grid quality deteriorates and convergence characteristics becomes poor. To pre
this, the shock front indexes are readjusted to satisfy Eq. (33). For example, if shock fr
indexes are

SFI(Li—2 =2 SFILi-1=2 SFILi) =4
SFI(1,i +1) =5, SFI1,i+2) =86,

SFI(1,i — 1) andSFI(1, i) are rearranged as

SFI(L,i —2) =2, SFI(1,i —1) =3, SFIL,i)=4
SFILi+1) =5 SFILi+2) =86.

Since Step 1 and Step 2 are mutually independent, good quality grids can be obtaine
long as the shock front indexes satisfy the condition of Eq. (33). It should be observed t
the implementation of SAGT does not always bring the change of grid connectivity. If y«
makeSFI(n, i) constant for all -indexes, high quality shock-aligned grids can be obtaine:
without the change of grid topology, as shown in Fig. 14. However, in the general cz
involving shock intersection or reflection, the change of shock front indexes is inevitabl

c. Construction of ashock-aligned grid systerm this step, a shock-aligned grid system
is made using shock-aligned grid points calculated in Step 1 and shock frontindexes obta
in Steps 2.a and 2.b. This is accomplished by simply connecting two end points of a sh
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front index to shock-aligned grid points to form shock-aligned line:

X(i, SFI(n, 1)) = Sd, Y@, SFI(n,i)) = sq,y (34)
34
x(i —1,SFIn,i)) = Sg_; 4, y( —1,SFIn,i)) =SH_4,.

As a result, grid connectivity is locally changed. Figure 3c shows the shock-aligned g
system after this step. In an initial structured grid system, a substantial amount of errc
induced from the shock discontinuity region where jhiadex of the shock front indexes
changes as shown in Fig. 3b. The error is removed or minimized by the shock-aligned
system as in Fig. 3c.

d. Smoothing grid points. After constructing shock-aligned grid points, smoothing nea
the shock region has to be carried out toimprove grid quality, which is needed for the fast c
vergence and accuracy of anumerical solution. For the shock front jndex points within
j —5andj + 5 are smoothed. In the smoothing process, the location of shock-aligned ¢
points, that is, shock position, must not be changed to maintain the property of Eq. (21

3.2.3. Step 3: Convergence of Solution

In Step 3, an accurate solution is obtained by applying shock-aligned grids in a recur:
manner.

a. Sub-iteration. A converged shock position and a final shock-aligned grid system a
obtained based on the solution of an initial grid system. In the region where the locat
of the grid points is altered, a new accurate solution is obtained by simple explicit tir
integration to remove the error due to the change of grid topology and grid smoothing. -
calculation of shock position and grid reconstruction process are repeatdfiwitécomes
zero, which means that shock position is converged. Although the error in this regior
eliminated through sub-iteration, it does not necessarily mean that the whole computati
domain is free from the error. Thus SAGT is applied repetitively.

b. Cycle. Since aninitial converged solution has in general numerical error as showr
Fig. 1d, which is especially noticeable with a low quality grid, a shock-aligned grid solutic
is not free from the error. Thus, the whole SAGT process needs to be applied more t
once (see Fig. 6). However, most of the error is usually eliminated in the first cycle and
difference in shock position is negligible. According to numerous computations, two cyc
turn out to be sufficient to obtain an accurate converged solution. Any additional cycles
not provide a noticeable improvement in accuracy.

3.2.4. Treatment of Shock Intersection or Reflection

SAGT is robust enough to be applied successfully in problems involving shock inters
tion or reflection. A specific process needs to be added in Step 1.d to solve such probl
accurately. In SAGT, the intersection or reflection of shocks is detected by comparing te
poral shock front indexes. With regard to this, the following procedure should be addec
Step 1.d:

a. Determine the shock intersection or reflection region.
b. Interpolate the shock-aligned grid points in shock intersection or reflection region

Figure 7 shows the process of SAGT for a shock reflection problem.
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| Cycle

Sub-iteration

Sub-domain Reconstruction

iterations of grid system Whole-domain

iterations

?

FIG. 6. Procedure of sub-iteration and cycle.

a. Determination of shock intersection or reflection regiorishe shock intersection or
reflection region is commonly spread over one to five cells. Thus the region is determir
by checking the difference between temporal shock front indexes. If the difference is |
than three for a givem-index, the region is tagged as the area of shock intersection
reflection.

For the shock intersection problem,

TSFI(n,i) — TSFn — 1,i) < 3. (35)

{a) akigingl gri

T5tstep

V|

—
|

\\—(.d.) 3rd dten
—t—
|

[ A

FIG. 7. SAGT process for the problem of shock reflection.
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For the shock reflection problem,
|TSFI(n, |) - jwal|| = 3. (36)

b. Interpolation of shock-aligned grid points in shock intersection or reflection regiol
Owing to insufficient cells in this region, shock-aligned grid points in Step 1.d may |
calculated inaccurately. Thus the following modification is necessary.

For the index, the region of interest is taken as- k toi + k with 1 < k < 2. Then,
the intersection or reflection point is recalculated by extrapolation using neighboring sh
positions of the index. It is the intersection point of two lines passing through the point
Sp.i-k-1 andSp.i_k_2 for thenth andn + 1th shock position, respectively. Other shock-
aligned grid points within the region of interest are interpolated using the newly determir
point and neighboring shock positions®f i «—1 and S —k+1-

In addition, there are minor constraints for the fast convergence of shock position.
Step 2.b where shock front indexes are readjusted to satisfy Eq. (33), the shock f
index of intersection or reflection must not change. Otherwise, the shock position may
converged very slowly. Also, in Step 3.a, it is desirable to divide the computational dom.
with respect to the intersection point and to apply the sub-iteration step separately, i.e
the upstream shock region first and then to the downstream shock region. This remove
downstream propagation of upstream shock error and contributes to the fast converg
of shock position in the whole domain.

3.3. Quality of Grid System by SAGT

The purpose of SAGT is tautomaticallyreconstruct a grid system that supports the
capturing of shock discontinuities with little numerical error. SAGT is independent of
numerical scheme as long as it is able to capture a shock with only one cell interface
shock-aligned grid system, such as AUSMPW+. In addition, SAGT is independent of
accuracy, robustness, or efficiency of a solver since it just provides a grid system.

The quality of a grid system by SAGT can be controlled by the threshold value
Egs. (17), (18), and (24). In the present computations, the maximum pressure differenc
5% (d pmax = 0.05) with respect to the pressure jump across a shock is allowed. More ac
rate results can be obtained by reducing the threshold value at the expense of converg
behavior. Figure 8 shows a typical spatial error distribution computed with the original gri
and shock-aligned grids. The error is defined as

1
error= Fi2 mass— E(PLUL + prUR), (37)

whereFy/» massis the mass flux at a cell interface using the AUSMPW+ schemeJand
is the velocity component normal to a cell interface. As shown in Figs. 8 and 9, the er
in the region of a shock is reduced more than one order of magnitude. Although the re
of shock-aligned grids shows some error at the kinked grid points, it does not compron
solution accuracy as shown in Section 4.1. Moreover, the error may be reduced further:
a smallerd pmax-
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0r|g inalgrid (grid 1) Shock-aligned grid (grid 1) I

-

FIG. 8. Numerical error distributions.

3.4. Convergence Characteristics of SAGT

The convergence behavior of SAGT is checked at two steps as can be seen in Fi
one at the sub-iteration step that determines shock position and the other at the wt
domain iteration step to examine the error by shocks in the whole computational dom:
For complete SAGT results, more than two cycles are necessary. Since shock positic

0.20
i Error
0.16 —.— Shock-aligned grid
’ —EO— Original grid

Error

0.00
0.00 0.40 0.80 1.20 160 2.00

S (i=33)

FIG. 9. Numerical errors along the line AB.
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FIG. 12. Error history of the original grids.

o

the subiteration step is calculated based on the initial converged solution that contains
error by shocks, the result after Cycle 1 may not be free from errors. Figures 10 to
show the typical convergence behavior of SAGT with grid type 1 in Section 4.1. Figure

shows the error history for each sub-iteration. In Cycle 1, four sub-iterations are carr
out, and two sub-iterations are carried out in Cycle 2. In calculating strong shocks, i
occasionally seen that solutions cannot be converged because of high frequency er
as shown in sub-iterations of Cycle 2. The problematic region is commonly where t
maximum error occurs in the computational domain. The error can be eliminated by
minute readjustment of grid points within the constraint of the threshold limjig;{ and

d pmax), and convergence can be guaranteed. If the solution is not converged in previous
sub-iteration, the pressure behind the shock in the problematic region is calculated a
as

_ (Pj+n + dPmin - Prs)
1+dpmin

Pbs , N=0,im—2<i<im+2 (38)

wherein, is thei-index where maximum error occurs in the previous sub-iteration.
Figure 11 shows the error history of the whole-domain iteration at each cycle. Althou
the CFL number is restricted by 0.75 in the original grids, it can increase up to 3 in sho
aligned grids since the error or instability by shocks is substantially reduced. It is not
that the location of grid points does not change after Cycle 2 since all pressure distri
tions satisfy the constraint of the threshold limitigagin andd prax) in the whole domain.
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FIG. 13. Difference of shock position between Cycle 1 and Cycle 2 aleimglex.

Figure 13 shows a delicate difference in shock position after Cycle 1 and Cycle 2, wh
is due to the error contained in the initial converged solution for Cycle 1. Table | sho
the comparison of computational cost for SAGT with that of the original grids. Solutior
are converged to an error level of 70 Four cycles are executed for the complete imple:
mentation of SAGT. The extra computational cost is about 28% compared to the origi
grids. The time needed to perform sub-iterations in Cycles 1 and 2 takes only about
out of the total cost. The total cost is closely related to grid quality. As initial grid qua
ity gets better, SAGT can be implemented much more efficiently. For example, if a hi
quality grid is presented initially as in Fig. 14, the computational burden of SAGT

negligible.

TABLE |
Comparison of Computational Cost

Time (s) Time/TiM@rigina (%0)

Original Grid 3647 100.00
SAGT
Sub-iteration (Cycle 1) 22 0.60
Whole-domain iteration (Cycle 1) 68 1.86
Sub-iteration (Cycle 2) 28 0.76
Whole-domain iteration (Cycle 2) 313 8.58

Total time (Cycles 1-4) 1022 28.02
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FIG. 14. Shock-aligned grid system.
4. NUMERICAL RESULTS FOR SAGT WITH AUSMPW+

In this section, we present the computed results of SAGT combined with the AUSMPV
scheme. Test cases cover from calorically perfect gas flows to equilibrium and nonequi
rium gas flows.

4.1. Hypersonic Flows over a Blunt Body

The free stream conditions are

e calorically perfect gas, e M, =16.32, ® P =
82.95 N/nf,

o 0o =5.557x 1073 kg/m?®, e 1, =3.369x 106 kg/ms?, e T, =52K,
e Re=1.4972x 10, e Pr=0.72.

o Tyal = 2944 K,

Shock-aligned grid

Original grid

ocle e,

R
LR
Yen

FIG. 15. Comparison of shock-aligned grids and original grids.
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ri

[ 11 LV

FIG. 16. Various grid types around a blunt body.

The conditions for the computation are

e Time integration: CFI=0.75, AF-ADI,

e Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter,
the number of grid point = 4& 60 (see Fig. 15),

e Boundary condition:  constant temperature wall,

e Threshold values: dpmax = 0.05 andd pmin = 0.01.

As a standard test case that examines the effects of a strong shock wave and a
gradient in a boundary layer, a hypersonic blunt body problem is chosen. The prim
concern is to handle the error due to computational grid and numerical instability. In 1
original grids, the time step due to the CFL condition is severely restricted because of
instability induced from a stiff gradient near a shock. Thus the CFL number cannot
greater than 0.75. SAGT, however, relaxes the restriction substantially and the CFL nun
can be increased to 3.0. The other advantage, which is more important, is that acct
aerodynamic coefficients can be obtained almost irrespective of initial grid distributic

Shock-aligned grid (grid 1)

Pressure contour Pressure contour

|

FIG. 17. Comparison of pressure distributions.
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Original grid ( grid 1) | Shock-aligned grid (grid 1)

H H
138,378 138.378
139.133 138,133
138.888 138.888
136,643 138.643
136.398 136,308
138.153 138.153
137.508 137.908
137.663 137 663
137.418 137.418
137173 137.473
136.929 136.929
136,684 136.684
136.439 136.439
1356.194 136.194
135.949 135.949
135.704 135.704
135.459 135.459
135.214 135.214
134.969 134.869
134.724 134.724
134,48 134.48
134.235 134.235
133.99 133.99
133.745 133.745
135 1335

FIG. 18. Comparison of total enthalpy for grid type 1.

Figure 16 shows three types of grids around the blunt body depending on the grid que
around the stagnation streamline: grid type 1 is normal to the stagnation streamline, |
type 2 is greater than a 90 degree angle, and grid type 3 is smaller than a 90 degree a
Figures 17, 19, and 21 show that shocks are captured very crisply in shock-aligned
systems and the resolution is independent of initial grid distribution. In non-shock-align
grids, however, shocks are diffused over a few cells and influenced by an initial syste
Thus, the error intrinsically exists in converged solutions. Figures 18, 20, and 22 show
total enthalpy error induced by the steady shock and its propagation on the downstr
side in each grid system. Figures 23 and 24 confirm that the surface heating rate is inc
highly affected by a grid system, and the error from the shock actually influences the fl
physics at the wall. In grid type 2 the solution yields a higher total enthalpy in the stagnat
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Pressure contour Pressure contour

FIG. 19. Comparison of pressure distributions.
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Original grid (grid 2) | Shock-aligned grid (grid 2}

H H
139.378 139.378
139.133 129,133
138.888 138.688
138.843 138.643
138,398 128,398
138.153 138.153
137.808 137,908
137.663 137.663
137.418 37.418
137473 BraTa
136.929 136,929
136.684 136.684
135.439 136,438
136194 136,194
135949 135.949
135.704 135.704
135.459 135.459
135.214 135.214
134,969 134,269
134.724 134.724
134.48 134.48
134,235 134.235
133.99 133.99
133,745 133.745
133.5 1335

FIG. 20. Comparison of total enthalpy for grid type 2.

region and the surface heating rate is overestimated. The opposite behavior can be obs
from the solution with grid type 3. In contrast, in shock-aligned grids, the total enthalpy
preserved and the influence of grid distribution is eliminated. Mathematically, the type of
governing equations in the stagnation region becomes amorphous because the conve
velocity approaches zero. Thus the order of error can be easily larger than a convec
term, and a little numerical error may influence the solution significantly, especially f
sensitive aerodynamic coefficients such as the surface heating rate.

Vorticity is also very sensitive to the error since it is the derivative of basic flow variable
The relation between vorticity and the error in the shock region was investigated in detai
Lee and Zhong using accurate shock-capturing methods such as TVD and ENO scheme
Aside from the accuracy issue of shock-capturing schemes in non-shock-aligned grids,

Original grid (grid 3) Shock-aligned grid (grid 3)

N

Pressure contour Pressure contour

FIG. 21. Comparison of pressure distributions.
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Original grid (grid 3) S hock-aligned grid (grid 3)
H H
139.378 139.378
139.133 139,133
138,888 138,888
138.643 138.643
138.398 138.398
138.153 138.153
137.8908 137.908
137.663 137.663
137.418 137.418
u7.173 137.173
136.829 136.929
136,684 136,684
136.439 136.439
136.194 136.194
135.949 135.949
135.704 135.704
135.459 135,459
135,214 85214
134.969 134.969
84,724 134,724
134,48 134,48
134,235 134,235
133.99 133.99
133.745 133.745
133.5 133.5

FIG. 22. Comparison of total enthalpy for grid type 3.

also observed that grid resolution and grid alignment seriously influence the productior
spurious post-shock oscillations. It was shown that grid refinement reduced the wavelel
of spurious oscillations but did not affect the amplitude significantly. Grid alignment, ¢
the other hand, substantially decreased the amplitude of spurious oscillations but did
eliminate it completely. As a remedy, to remove the vorticity oscillations completely,
shock-fitting technique was adopted. In the present work, we advocate the shock-captt
approach because of its broad applicability, and we try to cure this problem by usin
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FIG. 23. Comparison of surface heating rates for the original grid systems.
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FIG. 24. Comparison of surface heating rates for shock-aligned grid systems.

SAGT with AUSMPW-+. \orticity is calculated as

fffuo=fffe v f-
0= \]/'(/vdx—i-/udy)’

107

(39)

(40)

wherew is vorticity, V is the velocity vector, an is a cell volume. Figure 25 shows

| Original grid (grid 1) I

Vorticity contour

Shock-aligned grid (grid 1) I

{ Vorticity contour

FIG. 25. Comparison of vorticity contours.
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S hock-aligned grid (Case 1) I S hock-aligned grid (Case 2) I

FIG. 26. Comparison of vorticity contours.

the vorticity contours with 50 contour levels in the original grids (grid 1). As shown ii
Fig. 27, they are highly oscillatory in the original grids while SAGT provides a remarkab
improvement. Even with SAGT, however, the result is not shown to be perfect. It is due
the error induced at kinked grids of an initial grid system. Although the error is substantia
reduced in shock-aligned grids as shown in Fig. 9, a little remnant produces a notice:
vorticity oscillation. Figures 26 and 28 show the results in a shock-aligned grid system w
different formulations for the numerical speed of sound. As can be seen in Fig. 14,
final shock-aligned grids do not contain the change of grid connectivity since the qua
of the initial grids is good. The averaged speed of sounck ef (c_ + cr)/2 is used for
Case 1, and the newly defined speed of sound (Eq. (13)) is used for Case 2. As a re
Case 1 cannot support the capturing of an oblique shock in one cell interface. As can be
in Fig. 28, the choice of the speed of sound critically influences the vorticity distributio
In Case 1, vorticity exhibits an oscillatory behavior in the shock region even in a shoc
aligned grid system because the numerical scheme adopted cannot capture a shock wi
numerical error. Therefore, an accurate numerical scheme and grid reconstruction sch
should be combined appropriately in order to treat this problem within the framework o
shock-capturing method.

4.2. Reflection and Intersection of Shock Waves
The free stream conditions are
e calorically perfectgas e M., =3.0, e wedge angle-5°.
The conditions for the computation are

e Time integration: CFL = 0.5, AF-ADI,

e Spatial discretization: AUSMPWH+, 3rd-order MUSCL with Minmod limiter,
the number of grid point 50 x 30, 50 x 45
(see Figs. 29 and 32),
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FIG. 28. Comparison of vorticity distributions in shock-aligned grid system along line AB.
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FIG. 29. Comparison of pressure distributions.

e Boundary condition: slip condition,
e Threshold values:  dpmax = 0.01 andd pmin = 0.005.

In order to examine the flexibility and robustness of SAGT, the reflection and intersect
of shocks are investigated. These test problems are quite important since shock interse

2.2
exact solution (pIQ.=2.0653)
S S
2.0 —
18 4 wall pressure distribution
_e__. origian] grid
i —@— shockaligned grid
1.6 —
B 4
1.4 —
P
1.2 H
1.0 H ]
0.8 r T T T r T T T T
-0.4 0.0 04 0.8 1.2 16
X

FIG. 30. Comparison of wall pressure distributions.
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FIG. 31. Comparison of shock position for shock reflection problem.

and reflection are very basic phenomena in the analysis of complex flow problems. As
be seen in Figs. 29 and 30, the oblique shock is captured through eight cell interface
the original grids, while it is captured over only one cell interface in shock-aligned gric
Figures 30 and 31 confirm that the calculated shock position is identical to the exact s
tion. In case of shock intersection, similar performance can be observed from the resuls
Figs. 33 to 35. This example supports the fact that SAGT can be applied to flows involv
complex shock interaction.

4.3. Equilibrium and Nonequilibrium Flows around a Cylinder

The free stream conditions are

e equilibrium and nonequilibrium gase My, = 15, e Po = 66341 N/n?,

o poo = 9.8874x 1073 kg/m?, e [ioo =1514x e T, =23375K,
10 kg/m- &,

o T, = 11687 K, e Re=2.0x 1CP.

B IRIRIRIRC

FIG. 32. Grid systems for shock intersection problem.
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FIG. 33. Comparison of pressure distributions for shock intersection problem.

The conditions for the computation are

e Time integration: CFl=0.5, LU-SGS,

e Spatial discretization: AUSMPWH+, 3rd-order MUSCL with minmod limiter,
the number of grid point 80 x 55 (see Fig. 36),

e Boundary condition:  constant temperature wall (fully catalytic wall),

e Threshold values: dPmax = 0.05 andd pin = 0.01.

Figure 36 is the result of SAGT applied to equilibrium and nonequilibrium flows an
shows high resolution in capturing the bow shock. The robustness of SAGT can be obse
again in Fig. 37. It is difficult to compare shock positions of the two-temperature moc
with those of the four-temperature model because of the delicate difference. However
applying SAGT, the minute difference of shock positions could be obtained directly. Ev
though the source term of the governing equations in nonequilibrium gas produces
broad area of shock transition, it is observed that SAGT is still available in the higk
nonequilibrium region.

22
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+

pressure distribution
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18 o
P
pO)
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i dsolltion(p/phﬂm)
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FIG. 34. Pressure distributions at= 1.305.
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FIG. 35. Comparison of shock position for shock intersection problem.
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FIG. 36. Grid system and pressure distributions around a blunt cone.
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FIG. 37. Comparison of shock positions for various gas models.

4.4. Nonequilibrium Flow around a Blunt Cone

This test case is for the comparison of a computed shock position with the experimel
data in the ballistic range. The free stream conditions are

¢ nonequilibrium gas, e u,, = 3.63 km/s, e p,, = 2400 N/nf,
e T, = 293K, e R=0.007 m, e axisymmetric flow.

The conditions for the computation are

e Time integration: CFl=0.5, LU-SGS,

e Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter, the
number of grid point 150 x 40,

e Boundary condition:  slip condition,

e Threshold values:  dpmax = 0.05 anddpyin = 0.01.

Figures 38 and 39 show the standing shock distance computed by SAGT with AUSMPV
which agrees very well with experimental data. Again, the oblique shock is not diffused &
captured over only one cell interface. This confirms again the accuracy of the numer
solution based on SAGT and the speed of sound of Egs. (12) and (13).

4.5. Nonequilibrium Flow around a Double Cone

This test case involves the phenomenon of shock intersection and reflection of expan
fan in a nonequilibrium gas. The free stream conditions are
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FIG. 38. Comparison of shock distance with experimental data.

FIG. 39. Comparison between computed result and experiment.
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Pressure contour (original Grid)

| Pressure contour (SAGT) |

FIG. 40. Pressure and density distributions around a double cone.

¢ nonequilibrium gas, e M, = 15, e Do = 66341 N/n?,

 poo = 9.8874% 1073 @ poo = 1.514x 10 5kg/m-2, e To = 23375K,
kg/m?,

e T,an = 11687 K, e Re=20x 10, o axisymmetric flow.

The conditions for the computation are as follows:

e Time integration: CFI=0.5, LU-SGS,

e Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter, the
number of grid point 150 x 60,

e Boundary condition:  constant temperature wall (fully catalytic wall),

e Threshold values: dpmax = 0.05 andd pin = 0.01.

The comparison of complex flow structure is shown in Fig. 40. By removing the nume
cal error near the shock intersection region, the shear layer developing from the intersec
pointis computed more accurately. Although SAGT can be applied to various shock inter
tion problems, it might have a limited applicability in problems with very complex physice
phenomena compared to the number of grid points. For example, in the region whe
shock and expansion fan coexist very closely, such as for separation bubbles cause
shock/boundary interaction, it is difficult to judge the shock range in a coarse grid s\
tem (Steps 1.a and 1.b in Section 3.2.1). As a result, the shock position may not be e:

converged. Of course, if grid points are numerous enough, there is no difficulty.

4.6. Equilibrium Shock Wave/Shock Wave Interaction (Type V)

The free stream conditions are

e equilibrium gas, e M, = 1633, e P = 88003 N/n?,
® oo = 5.4656% 1073 o T, = 5227 K, o Tyal = 29444 K,
kg/m?,

e Re=145x 10°, e impinging shock angle- 13°.
The conditions for the computation are

e Time integration: CFI=0.5, AF-ADI,
e Spatial discretization: AUSMPW+, the number of grid peint61 x 65,
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FIG. 41. Density distribution of shock/shock interaction (Type 1V) in the original grid system.
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FIG. 42. Density distribution of shock/shock interaction (Type 1V) in the shock-aligned grid system.
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e Boundary condition: constant temperature wall,
e Threshold values:  dpmax = 0.1 andd pin = 0.01.

Flow conditions are the same as in Ref. [6]. Type IV shock/shock interaction phenome
are observed when a shock is impinging on a subsonic region behind a bow shock.
type of interaction has been shown to be inherently unsteady in perfect gas flows [7]. E
in equilibrium gas flows, a fully steady case has not been reported yet. Although SAGT
essentially for steady problems, it can be applied to this case successfully since the
unsteadiness is relatively weak. Owing to unsteady shock matigg. is chosen to 0.1.
Figures 41 and 42 show more closely the results of SAGT for the complex shock struct
especially the transmitted shock. These results also suggest that SAGT can be extend
fully unsteady problems with further improvement by newly defining the speed of sound
a cell interface.

5. CONCLUSIONS

As an accurate, robust, and efficient grid reconstruction scheme to compute hypers
flows, the SAGT (shock-aligned grid technique) is proposed. SAGT is a method to rec
struct a grid systerautomatically which supports the capturing of a shock with minimal
numerical error. With the advantage of the AUSMPW+ scheme that is able to capture nor
or oblique shocks through only one cell interface in shock-aligned grids, SAGT provide
very accurate shock resolution and a solution that is not influenced by initial grid distrik
tion. Also, the time step limit resulting from the CFL condition is considerably relieved b
removing the shock-induced error in non-shock-aligned grids. Aerodynamic coefficiel
or higher order derivative terms that are highly sensitive to a little numerical error, su
as surface heating rate or vorticity, can also be accurately calculated without unphys
oscillations. These advantages are thought to be important in computing problems invol\
strong shocks or physical oscillations. Numerous computed results confirm that SAG
robust enough to be applied in equilibrium and nonequilibrium flows.
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