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In order to eliminate or minimize the numerical error by shock waves due to grid
distribution in multidimensional hypersonic flows, a new grid reconstruction scheme,
the shock-aligned grid technique (SAGT), is proposed. The error due to shock waves
in a non-shock-aligned grid system magnifies in proportion to the Mach number
and propagates on the downstream side of the flow field to contaminate sensitive
aerodynamic coefficients or flow quantities. SAGT, combined with the AUSMPW+
scheme proposed in Part I of the present work, not only provides an accurate solution
but also reduces the grid dependency of a numerical scheme without a substantial
increase in computational cost. In addition, SAGT is robust and flexible enough
to deal with complex flow problems involving shock interaction and reflection and
equilibrium and nonequilibrium effects. Extensive numerical tests from a hypersonic
blunt body flow to hypersonic nonequilibrium flows validate the accuracy, efficiency,
robustness, and convergence characteristics of SAGT.c© 2001 Elsevier Science

1. INTRODUCTION

One of the distinct features in computing hypersonic aerodynamics is that it involves
severe viscous dissipation in boundary layers and strong shock waves, which leads to
the stiff gradient of flow properties or the reaction of air molecules. This imposes a high
degree of accuracy, robustness, and efficiency in designing a numerical flux function or a
time integration technique. For example, numerical dissipation has to be minimized to the
degree that it does not produce unphysical numerical oscillations. At the same time, high
frequency error around stiff gradient regions should be effectively damped out to avoid
compromising solution accuracy or convergence characteristics.

For accurate computations of hypersonic flows, it is essential to examine primary factors
that influence solution behavior critically. The present work focuses on the errors caused by
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a spatial discretization scheme and grid distribution. The first issue which was dealt with in
Part I of the present work, proposed a AUSMPW+ scheme for determining the numerical
flux function.

The treatment of the error by grid distribution is to be investigated in the present paper. One
of the fundamental reasons for error near strong shocks in multidimensional flows is closely
related to grid distribution since the position of shock discontinuity is usually not considered
in generating a grid system. The error in the region of a shock wave is generally magnified
in proportion to the Mach number or the distance between shock position and cell interface.
It continuously propagates on the downstream side of a shock, causing solution inaccuracy
and slow convergence. In addition, it may seriously affect sensitive aerodynamic coefficients
or higher order flow quantities, such as surface heating rate, vorticity, and turbulence eddy
viscosity [1]. This can be easily observed in cases of shock/shock interaction or flows
involving physical oscillations. Thus the removal or minimization of the error due to a grid
system is essential in computing hypersonic flow problems accurately.

Traditional methods to treat the error include mesh adaptation and a shock-fitting tech-
niques. The mesh adaptation method is to redistribute or increase the number of grid points,
based on a solution in a given grid system, around the region where a more accurate solution
is required. This approach may reduce the error but does not eliminate it completely. Aside
from the problem of the design of a robust error indicator, convergence characteristics and
the time step limit from the CFL condition may get worse as grid size becomes smaller.
In the shock-fitting technique, a shock wave is treated as a boundary, and a solution on
the downstream side of a shock is determined using the Rankine–Hugoniot relation such
that it is compatible with other parts of a solution. Since a shock does not spread even in
multidimensional flows, the error caused by a shock can be avoided and a higher order
scheme can be readily applied to obtain accurate results. However, this approach is not
robust enough to be implemented in complex flow situations. For example, shock/shock
interaction, shock reflection, complicated internal flow problems such as supersonic nozzle
flows, and equilibrium and nonequilibrium flows are among the important test cases for
which this approach cannot be applied.

Therefore, a fundamental way to eliminate or reduce the shock-induced error, within the
framework of shock-capturing philosophy, is to generate a grid system that reflects shock
position as accurately as possible. In other words, local grids need to be exactly aligned
with shock waves in a systematic way. At the same time, the numerical scheme adopted
should support the grid system in a way that allows it to capture normal or oblique shock
waves over one cell interface in the shock-aligned grid system. Unless both conditions are
satisfied, the error cannot be eliminated. The AUSMPW+ scheme, proposed in Part I of the
present work, satisfies the requirements for shock capturing. In the present paper, a new
grid reconstruction technique, the shock-aligned grid technique (SAGT), is proposed.

SAGT is a method to align cell interfaces of interest with shock wavesautomatically. In a
general grid system, it is very difficult to exactly align a shock with cell interfaces by simply
moving grid lines. It may be possible, only in a simple case, by a user’s iterative efforts. For
problems involving several shock waves, however, it is impossible to achieve a complete grid
alignment with such brute-force attempts. The shock-fitting technique is also partially avail-
able since it cannot be applied to complicated flows involving shock/shock interaction or
nonequilibrium effects. On the other hand, SAGT is robust and flexible enough to overcome
those difficulties without a significant increase in computational cost. Using SAGT com-
bined with AUSMPW+, accurate solutions can be obtained with minimal numerical errors.
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The present paper is organized as follows. Following the introduction, a brief descrip-
tion on the governing equations and numerical discretizations is given in Section 2. In
Section 3 the procedure of SAGT is explained in detail. Extensive test cases of SAGT with
AUSMPW+ ranging from shock intersection and reflection to hypersonic equilibrium and
nonequilibrium flows are presented in Section 4 to validate accuracy, efficiency, robustness,
and convergence characteristics. Finally, conclusions based on the results of the previous
sections are drawn.

2. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATIONS

The governing equations and spatial and temporal discretizations are the same as in the
Part I of the present work. Thus, they are briefly introduced in this section.

The two-dimensional, axisymmetric Navier–Stokes equations in conservative form are
used as

∂Q
∂t
+ ∂E
∂x
+ ∂F
∂y
=
(
∂Ev
∂x
+ ∂Fv
∂y

)
+ S, (1)

whereS represents the source term due to thermochemical phenomena or axisymmetry.
Three types of gases are considered according to the reaction effects of air molecules.

For a calorically perfect gas or equilibrium air molecules, the equation of state is given
by

p = (γ̃ − 1)ρe= (γ̃ − 1)ρ

(
et − 1

2
(u2+ v2)

)
, (2)

where ˜γ is 1.4 for a calorically perfect gas and is calculated by the curve-fitted data in
Refs. [2, 3] for equilibrium air. For nonequilibrium air, the contribution of each molecular
species is included to yield

p =
∑

s

ρs
R

Ms
T, (3)

whereR is the universal gas constant (8.314 kJ/kg·mole·K) andMs is the molecular weight
of each species. All the effects of chemical species and vibrational energy are considered
using the five-species (O2, N2, NO, O, N) chemical reaction model in the temperature range
of 2500 K< T < 9000 K [4, 5]. Then, the final flow and flux vectors are given by

Q=



ρ

ρu
ρv

ρet

ρ1

ρ2

ρ3

ρevib,3

ρevib,4

ρevib,5


, E =



ρu

ρu2+ p
ρuv

(ρet + p)u
ρ1u
ρ2u
ρ3u

ρevib,3u
ρevib,4u
ρevib,5u


,
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F =



ρv

ρuv

ρv2+ p

(ρet + p)v
ρ1v

ρ2v

ρ3v

ρevib,3v

ρevib,4v

ρevib,5v


, S=



0
0
0
0
ẇ1

ẇ2

ẇ3

ρėvib,3+ ẇ3evib,3

ρėvib,4+ ẇ4evib,4

ρėvib,5+ ẇ5evib,5



, (4)

Ev =



0
τxx

τxy

ev

ρD1
∂c1
∂x

ρD2
∂c2
∂x

ρD3
∂c3
∂x

ρevib,3D3
∂c3
∂x + κvib,3

∂Tvib,3

∂x

ρevib,4D4
∂c4
∂x + κvib,4

∂Tvib,4

∂x

ρevib,5D5
∂c5
∂x + κvib,5

∂Tvib,5

∂x



, Fv =



0
τxy

τyy

fv

ρD1
∂c1
∂y

ρD2
∂c2
∂y

ρD3
∂c3
∂y

ρevib,3D3
∂c3
∂y + κvib,3

∂Tvib,3

∂y

ρevib,4D4
∂c4
∂y + κvib,4

∂Tvib,4

∂y

ρevib,5D5
∂c5
∂y + κvib,5

∂Tvib,5

∂y



,

whereev=uτxx+vτxy−qx, fv=uτxy+vτyy−qy and the subscripts (1–5) stand for chem-
ical speices. The four-temperature model is mainly used to test the robustness of SAGT with
AUSMPW+ unless it is mentioned specifically. For a calorically perfect gas or equilibrium
air, all the species and vibrational energy equations are omitted and Eqs. (4) become

Q=


ρ

ρu
ρv

ρet

, E =


ρu

ρu2+ p
ρuv

(ρet + p)u

, F =


ρv

ρvu

ρv2+ p

(ρet + p)v

,
(5)

Ev =


0
τxx

τxy

ev

, Fv =


0
τxy

τyy

fv

.
For a spatial discretization, AUSMPW+ is advocated as a baseline scheme because of its

accuracy, robustness, computational efficiency, and convergence characteristics (see Part I
of the present work for its validation). The property of AUSMPW+ that can capture a shock
wave through one cell interface is prerequisite for the implementation of SAGT. The flux
function of AUSMPW+ can be summarized as

F1/2 = M̄+L c1/2ΦL + M̄−Rc1/2ΦR + (P+L PL + P−RPR), (6)
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(i) for m1/2 ≥ 0

M̄+L = M+L + M−R × ((1− w) · (1+ fR)− fL),

M̄−R = M−R × w(1+ fR),

(ii) for m1/2 < 0

M̄+L = M+L × w(1+ fL),

M̄−R = M−R + M+L × ((1− w) · (1+ fL)− fR),

where the pressure-based weighting functions,w and fL ,R, are given by

w(pL , pR) = 1− min

(
pL

pR
,

pR

pL

)3

, (7)

fL ,R =

( pL ,R

ps
− 1
)

min
(

1, min(p1,L ,p1,R,p2,L ,p2,R)

min(pL ,pR)

)2
, ps 6= 0,

0 elsewhere,
(8)

with ps = P+L pL + P−R pR and where (p1, p2) are pressures in the transversal direction with
respect to a cell interface, which is explained in detail in Part I. The interpolation functions
for the split Mach number and pressure of AUSMPW+ at a cell interface are given by

M± =
(± 1

4(M ± 1)2, |M | ≤ 1

1
2(M ± |M |), |M | > 1,

(9)

P±|α =
( 1

4(M ± 1)2(2∓ M)± αM(M2− 1)2, |M | ≤ 1,

1
2(1± sign(M)), |M | > 1,

(10)

where 0≤ α ≤ 3/16.
The Mach number on each cell side is defined as

ML ,R = UL ,R

c1/2
, (11)

wherec1/2 is the speed of sound at a cell interface. For SAGT,c1/2 should be formulated
such that it can support the capturing of a shock through one cell interface. In order to
satisfy this, the speed of sound in AUSMPW+ is designed as follows:

(i)
1

2
(UL +UR) > 0: c1/2 = c2

s

/
max(|UL |, cs),

(ii)
1

2
(UL +UR) < 0: c1/2 = c2

s

/
max(|UR|, cs).

(12)

The speed of sound,cs, is formulated from the conservation laws normal to an oblique
shock as

cs =
(

2Hnormal
(γ̃L − 1)/γ̃LρL − (γ̃R− 1)/γ̃RρR

(γ̃R− 1)/γ̃RρL − (γ̃L + 1)/γ̃LρR

)0.5

, (13)
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where Hnormal= 0.5× (Htotal,L − 0.5× V2
L + Htotal,R− 0.5× V2

R) and the subscripts
(L , R) stand for the left and right side quantities across a cell interface.

For a higher order extension, a MUSCL (monotone upstream-centered scheme for con-
servation laws) approach based on primitive variables is adopted.

As a temporal integration, the governing equations are discretized by the backward Euler
method, and the Jacobian matrices are inverted approximately by an AF-ADI or LU-SGS
scheme. The AF-ADI scheme is used for a calorically perfect gas and an equilibrium gas.
In a nonequilibrium gas, the LU-SGS scheme is adopted for the efficient calculation of the
flux Jacobian and matrix inversion.

3. SHOCK-ALIGNED GRID TECHNIQUE

It is important to eliminate or minimize the error due to a grid system for accurate compu-
tations of hypersonic flows because the error or numerical instability generally increases in
proportion to the Mach number. This can be easily seen in non-shock-aligned grids which do
not take into account positions of physical discontinuities. Even with most accurate schemes
that can capture a shock discontinuity through one cell interface in a shock-aligned grid
system, such as Roe’s FDS or some AUSM-type schemes, large errors behind shocks or
oscillatory behavior can be easily observed when they are applied to non-shock-aligned
grids. Moreover, negative properties may be frequently obtained in severe test cases. As a
way to improve these situations, a grid system should reflect positions of physical shock
discontinuities as exactly as possible. Through a shock-aligned grid system, a shock wave
can be captured with minimal numerical errors.

The SAGT is a method of grid reconstruction that considers positions of physical discon-
tinuities obtained from an initial converged solution in the original non-shock-aligned grids.
The topology of the initial structured grids is changed locally in a way that cell interfaces are
aligned with shock discontinuitiesautomatically. Under the assumption that a numerical
scheme has the capability of capturing a shock discontinuity without numerical errors and
that an initial solution is sufficiently converged, SAGT determines the shock position very
accurately and minimizes the error caused by inaccurate grid distribution in the region of
shock waves. This advantage is more conspicuous in hypersonic flow computations since
the error across a shock wave is quite significant. In the case of a blunt body problem where
only one bow shock exists, it may be possible to align local cell interfaces with a shock
by a user’s experience, though complete alignment is difficult. However, in more compli-
cated situations such as the generation or intersection of several shocks, it is impossible
to constructa priori a shock-aligned grid system. By implementing SAGT systematically,
however, a shock-aligned grid system can be easily generated from initial grids and an
accurate solution with minimal numerical errors can be obtained.

3.1. Requirements for SAGT

In order for SAGT to be readily applicable, a numerical scheme adopted should satisfy
the following two conditions.

(i) An oblique shock as well as a normal shock should be captured with onlyonecell
interface if it is aligned with cell interfaces.

(ii) A numerical scheme should maintain a high level of robustness in calculating the
shock region.
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The first condition is needed because SAGT assumes that shock discontinuities are captured
through only one cell interface after successful implementation. Shock capturing with one
cell interface plays a key role as the barometer for checking the convergence of shock
position. The second condition is necessary for the stable convergence of shock position.
Unless a scheme satisfies the second condition, negative properties can be easily produced
owing to temporary numerical error introduced by the change of grid topology in the process
of aligning the shock with the grid.

There are several schemes to satisfy the first condition, including AUSM+, Roe’s FDS,
and AUSMPW+. AUSM+ with the speed of sound in Eqs. (12) and (13) is able to capture
shocks without numerical error even for reacting gas flows. Moreover, it can overcome
numerical instability due to the abrupt change of grid topology. However, it shows oscil-
latory phenomena which take much more computational time in the convergence of shock
position. Roe’s FDS, which has a numerical dissipation matrix that becomes zero at the
sonic point, also captures shocks without numerical dissipation. Unfortunately, it does not
survive the instability. According to the authors’ experience, AUSMPW+ is the most ap-
propriate scheme for the implementation of SAGT. Like AUSM+, AUSMPW+ captures
shocks without numerical error and it is robust enough to overcome the instability caused
by shocks. In addition, it does not show any oscillatory behavior, which leads to the fast
convergence of shock position.

3.2. Procedure of SAGT

Figure 1 shows the brief procedure of SAGT. In a non-shock-aligned grid system, a
shock is usually captured over the grid points with different grid index numbers. As shown
in Fig. 1d, a numerical shock is located at cell interfaces, and large error is introduced at
the grid points where grid indexes change. The error in this region is usually more than one
order of magnitude larger compared to that in other regions, and it increases in proportion
to the Mach number. Moreover, it propagates on the downstream side and compromises the
accuracy of a computed solution, as indicated in Fig. 1d. With a lower Mach number, it
does not cause a serious problem. In hypersonic flows, however, the error is large enough
to contaminate the downstream flow field behind shocks. The main purpose of SAGT is to
increase solution accuracy by aligning local grids with shocks. From Fig. 1c it can be easily
seen that SAGT yields much more accurate results.

The SAGT is composed of the following three main steps:

Step 1. Calculation of Shock Position—Calculate shock position from an initial con-
verged solution in a given grid system.

Step 2. Reconstruction of Grid System—Change the topology of local grids such that
local cell interfaces are aligned with the calculated shock position in Step 1.

Step 3. Convergence of Solution—Obtain a converged solution iteratively in a shock-
aligned grid system.

The detailed flowchart is given in Fig. 2.

3.2.1. Step 1: Calculation of Shock Position

a. Search for the region of stiff pressure gradient.The region of local maximum pressure
is determined for the detection of shock position in Step 1.c. In a simple case of a single
shock, we first search a cell interface index in thej -direction (normal to the wall) that has the
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FIG. 1. Comparison of shock-aligned grids with non-shock-aligned grids.

local maximum pressure difference,|pi, j+1− pi, j |, with the i -index (parallel to the wall)
fixed. And, a set of indexes (i , j ) is tagged as temporal shock front indexes (TSFI). TSFI
for several shocks can be obtained similarly. With a giveni -index, j -indexes are tagged
if the pressure difference is greater than a threshold value, which is determined by some
fraction of maximum pressure difference in the computational domain. Thej -indexes are
then rearranged according to the magnitude of the pressure differences. For example, it is
assumed that there are five temporal shock front indexes for a giveni -index:

TSFI(1, i ) = 7, TSFI(2, i ) = 12, TSFI(3, i ) = 8,
(14)

TSFI(4, i ) = 13, TSFI(5, i ) = 4.

If the difference of theTSFI, |TSFI(n, i )− TSFI(n′, i )|, is equal to one, both indexes are
considered to represent the same shock. Otherwise, they are assumed to indicate different
shocks. In this case, the first and the third, and the second and the fourth, indexes represent
the same shock, respectively. As a result, the number of shocks is three and the TSFI
are

TSFI(1, i ) = 12, TSFI(2, i ) = 7, TSFI(3, i ) = 4, (15)

for a giveni -index. By applying the same procedure for alli -indexes, the TSFI are com-
pletely determined.
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FIG. 2. Flowchart of shock-aligned grid technique.

Figure 3a shows the TSFI with dash-dot lines as

TSFI(1, 1) = 2, TSFI(1, 2) = 2, TSFI(1, 3) = 3,
(16)

TSFI(1, 4) = 3, TSFI(1, 5) = 4.

It can be seen that the value of thej -index is changed ati = 3 and 5, where a lot of error
is inevitably induced. The error should be carefully treated to obtain accurate results since
the amount is significant, which will be mentioned in detail in Step 2.c.

b. Decision of the range of shock waves.A shock is commonly captured through several
cell interfaces due to numerical dissipation in a non-shock-aligned grid system. Thus the
range of a shock can be assumed fromj −m− 1 to j + n for a giveni -index as shown in
Fig. 4, wherej is the temporal shock front index determined in Step 1.a. Then, the range of
a shock is specified by comparing pressure differences between the two neighboring points.
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FIG. 3. (a) Search of temporal shock front indexes and interpolation of shock-aligned grid points (Step 1).
(b) Search of shock front indexes, which is a set ofj -indexes nearest to calculated shock positions (Step 2).
(c) Movement of two end points of shock front indexes onto shock-aligned grid points (Step 2).

When pj > pj−1,

pj+n+1− pj+n

pj − pj−1
> dpmax, (17)

pj−m−1− pj−m−2

pj − pj−1
> dpmax, (18)

FIG. 4. Calculation of shock position. (a) Before shock detection; (b) after shock detection.
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wheredpmax is the maximum allowable pressure difference. In a coarse grid system, it
is commonly 0.1, and in a dense grid system, it is 0.01. As it decreases, more accurate
results can be obtained though shock position converges slowly. The values ofm andn for
each indexi are determined by applying Eqs. (17) and (18) to the whole range ofj -index.
For an oblique shock,m or n is usually four or five;m or n is one or two for a normal
shock. After the complete implementation of SAGT,m andn become zero, meaning that
a shock is captured through one cell interface. In case of several shocks, care should be
taken so that the range of one shock does not include the TSFI of the other shocks. Other-
wise, significant error is induced in calculating shock position in Step 1.c, and the solution
does not converge. Thus thenth shock range of the indexi should satisfy the following
constraint:

j −m− 1 ≥ TSFI(n− 1, i )+ 1, (19)

j + n ≥ TSFI(n+ 1, i ). (20)

c. Calculation of shock position.Assuming that a shock is eventually captured through
one cell interface as shown in Fig. 4b, shock position is estimated by

∑
k

pk1xk|(a) =
∑

k

pk1xk|(b), (21)

where1xk is the distance between thekth and the(k+ 1)th cell interface. If areaA is
αi1xj , α is obtained from Eq. (21). Whenpj > pj−1,

αi =
∑k= j+n

k= j−m−1 pk1xk

∣∣
(a) − pf s

∑k= j−1
k= j−m−11xk

∣∣
(b) − pbs

∑k= j+n
k= j 1xk

∣∣
(b)

(pbs− pf s)1xj
, (22)

for 1< i < imax. pf s is the pressure in front of a shock andpbs the pressure behind a shock.
Thus the estimated shock position is the geometric center of the shock region. The value
of ‖α‖ = (∑i α

2
i )

1/2 is the barometer to check the convergence of shock position. If‖α‖
becomes zero, the shock position is completely converged.

In the stagnation region of a blunt body, there are gradients of flow properties caused
by physical compression processes even after a shock. Thus the range of a shock needs to
be carefully determined so that it does not interfere with the region of physical compres-
sion. This is achieved by modifying the pressure behind a shock usingdpbuffer anddpmin,
where

dpbuffer= pj+n − pbs

pbs− pfs
,

pj+n+2− pj+n+1

pj+n+1− pj+n
≥ 0,

(23)
dpbuffer= pj+n+1− pbs

pbs− pfs
,

pj+n+2− pj+n+1

pj+n+1− pj+n
< 0,

and wherepj+n+1 is the pressure in the cell next to the shock range. Then,pbs is modified
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as

pbs =



(pj+n+ dpbuffer · pf s)

1+ dpbuffer
n > 0, pj+n+2− pj+n+1

pj+n+1− pj+n
≥ 0,

(pj+n+1+ dpbuffer · pf s)

1+ dpbuffer
n > 0, pj+n+2− pj+n+1

pj+n+1− pj+n
< 0,

(pj+1+ dpmin · pj−1)

1+ dpmin
, n = 0,

∣∣∣ pj+1−pj

pj − pj−1

∣∣∣ < dpmin,

pj , elsewhere,

(24)

pf s = pj−m−1, (25)

wheredpmin ≤ dpbuffer ≤ dpmax · dpmin is a minimum threshold value for the pressure differ-
ence.dpbuffer anddpmin give a buffer zone to accelerate the convergence of shock position.
In a coarse grid system,dpmin is commonly 0.02, whereas in a dense grid system it is 0.005.
dpbuffer is given as

dpbuffer= 0.75 · dpmin+ 0.25 · dpmax. (26)

When the flow behind the shock range is compressed again, that is,

pj+n+2− pj+n+1

pj+n+1− pj+n
> 0,

dpbuffer anddpmin exclude the possibility thatpbs is overestimated. It should be noted that
pressure behind a shock is temporary until shock position is completely converged. Once
it is converged, however, it is equal to the pressure atj .

d. Determination of shock-aligned grid points.The purpose of this step is to obtain
shock-aligned grid points based on the calculated shock position. From the result of Step 1.c,
the location of a shock-aligned grid point is interpolated from center points of neighboring
shock positions (see Fig. 3a and 3b). In this step, the position of interpolated shock-aligned
grid points should be completely consistent with the constraint of Eq. (21). Otherwise, the
center point of the shock position after interpolation, which is now the center point of the
two shock-aligned grid points, is different from the center point before interpolation. As
a result, significant error can be incurred since a shock will be eventually placed along
shock-aligned grid points that are determined by interpolation.

Special care needs to be taken when there is a curvature of a shock, such as with a
bow shock, as shown in Fig. 5a.Spc,i indicates the center of shock position for a given
i -index. In this case, the slope of(Spc,i+1, Spc,i ) is different from that of (Spc,i , Spc,i−1).
If the shock-aligned grid points (Spi+1, Spi ) are determined by the linear interpolation of
(Spc,i+1, Spc,i , Spc,i−1), it does not satisfy the constraint of Eq. (21), as shown in Fig. 5b.
Since the shock will be eventually located along the grid points (Spi+1, Spi ), it leads to
a substantial amount of error. Thus the location of the interpolated grid points should
be modified to satisfy Eq. (21) as follows. First, they are assumed to be determined by an
arbitrary interpolation method as shown in Fig. 5a. Then (Spi+1, Spi ) are moved to the final
interpolated grid points (Sp′i , Sp′i+1), as shown in Fig. 5b, to compensate for the difference
between the center points,Spc,i andA:

pi · (Spc,i − B) = pi

(
Sp′i+1+ Sp′i

2
− B

)
. (27)
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FIG. 5. (a) Effect of shock curvature. (b) Interpolation of shock-aligned grid points.

Then

Spc,i = Sp′i+1+ Sp′i
2

. (28)

Thus we have

Sp′i−1+ 2Sp′i + Sp′i+1 = 2(Spc,i−1+ Spc,i ), (29)

for 2< i < imax− 1. Equation (29) forms a tri-diagonal matrix that can be solved implicitly.
Unfortunately, if the grid topology changes abruptly, that is,‖α‖ has a large value, the
accurate solution of Eq. (29) may not be obtained. Thus the diagonal dominance is enforced
to Eq. (29) by adding the linear interpolation equation:

Sp′i−1+
(
2+ ‖α‖0.5) Sp′i + Sp′i+1 =

(
2+ ‖α‖

0.5

2

)
(Spc,i−1+ Spc,i ). (30)

As a result, Eq. (21) is satisfied since‖α‖ becomes zero after the complete convergence of
shock position. The condition for the boundary grid points is

Sp′1 = 1.5Sp1− 0.5Sp2, Sp′i max= 1.5Spi max− 0.5Spi max−1. (31)

After finishing Step 1, shock-aligned grid points and shock position are completely
determined.
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3.2.2. Step 2: Reconstruction of Grid System

a. Search and determination of shock front indexes.Shock front indexes are defined as
a set of indexes for which cell interfaces should be aligned with shock discontinuities. They
consist of the cell interface indexes nearest the calculated shock position that are obtained
in the previous Step 1 (see Fig. 3b). It should be noted that the TSFI in Step 1 may not
be the same as the shock front indexes ifαi of Eq. (22) is greater than 0.5. After SAGT
is successfully applied, the line formed by shock front cell interfaces directly represents a
shock discontinuity. Shock front indexes contain the information

SFI(n, i ) = j, (32)

wheren indicates thenth shock discontinuity. Equation (32) means that thenth shock
discontinuity is located on the cell interface(i, j ). In the case of several shocks, such as
a shock intersection problem,n is more than two for a giveni -index. Figure 3b shows
the shock front indexes with dash-dash lines, and these are seen to be different from the
TSFI.

b. Readjustment of shock front indexes.In order to obtain good quality grids, it is
required that neighboring shock front cell interfaces should not be separated more than one
grid size, meaning that

|SFI(n, i + 1)− SFI(n, i )| ≤1. (33)

In cells of high aspect ratio, however, Eq. (33) is violated. Then, unlike the usual case of
Fig. 1a, more than three grid points can be merged into one shock-aligned grid point. As a
result, grid quality deteriorates and convergence characteristics becomes poor. To prevent
this, the shock front indexes are readjusted to satisfy Eq. (33). For example, if shock front
indexes are

SFI(1, i − 2) = 2, SFI(1, i − 1) = 2, SFI(1, i ) = 4,

SFI(1, i + 1) = 5, SFI(1, i + 2) = 6,

SFI(1, i − 1) andSFI(1, i ) are rearranged as

SFI(1, i − 2) = 2, SFI(1, i − 1) = 3, SFI(1, i ) = 4,

SFI(1, i + 1) = 5, SFI(1, i + 2) = 6.

Since Step 1 and Step 2 are mutually independent, good quality grids can be obtained as
long as the shock front indexes satisfy the condition of Eq. (33). It should be observed that
the implementation of SAGT does not always bring the change of grid connectivity. If you
makeSFI(n, i ) constant for alli -indexes, high quality shock-aligned grids can be obtained
without the change of grid topology, as shown in Fig. 14. However, in the general case
involving shock intersection or reflection, the change of shock front indexes is inevitable.

c. Construction of a shock-aligned grid system.In this step, a shock-aligned grid system
is made using shock-aligned grid points calculated in Step 1 and shock front indexes obtained
in Steps 2.a and 2.b. This is accomplished by simply connecting two end points of a shock
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front index to shock-aligned grid points to form shock-aligned line:

x(i,SFI(n, i )) = Sp′i,x, y(i,SFI(n, i )) = Sp′i,y
(34)

x(i − 1,SFI(n, i )) = Sp′i−1,x, y(i − 1,SFI(n, i )) = Sp′i−1,y.

As a result, grid connectivity is locally changed. Figure 3c shows the shock-aligned grid
system after this step. In an initial structured grid system, a substantial amount of error is
induced from the shock discontinuity region where thej -index of the shock front indexes
changes as shown in Fig. 3b. The error is removed or minimized by the shock-aligned grid
system as in Fig. 3c.

d. Smoothing grid points.After constructing shock-aligned grid points, smoothing near
the shock region has to be carried out to improve grid quality, which is needed for the fast con-
vergence and accuracy of a numerical solution. For the shock front indexj , grid points within
j − 5 and j + 5 are smoothed. In the smoothing process, the location of shock-aligned grid
points, that is, shock position, must not be changed to maintain the property of Eq. (21).

3.2.3. Step 3: Convergence of Solution

In Step 3, an accurate solution is obtained by applying shock-aligned grids in a recursive
manner.

a. Sub-iteration. A converged shock position and a final shock-aligned grid system are
obtained based on the solution of an initial grid system. In the region where the location
of the grid points is altered, a new accurate solution is obtained by simple explicit time
integration to remove the error due to the change of grid topology and grid smoothing. The
calculation of shock position and grid reconstruction process are repeated until‖α‖becomes
zero, which means that shock position is converged. Although the error in this region is
eliminated through sub-iteration, it does not necessarily mean that the whole computational
domain is free from the error. Thus SAGT is applied repetitively.

b. Cycle. Since an initial converged solution has in general numerical error as shown in
Fig. 1d, which is especially noticeable with a low quality grid, a shock-aligned grid solution
is not free from the error. Thus, the whole SAGT process needs to be applied more than
once (see Fig. 6). However, most of the error is usually eliminated in the first cycle and the
difference in shock position is negligible. According to numerous computations, two cycles
turn out to be sufficient to obtain an accurate converged solution. Any additional cycles do
not provide a noticeable improvement in accuracy.

3.2.4. Treatment of Shock Intersection or Reflection

SAGT is robust enough to be applied successfully in problems involving shock intersec-
tion or reflection. A specific process needs to be added in Step 1.d to solve such problems
accurately. In SAGT, the intersection or reflection of shocks is detected by comparing tem-
poral shock front indexes. With regard to this, the following procedure should be added in
Step 1.d:

a. Determine the shock intersection or reflection region.
b. Interpolate the shock-aligned grid points in shock intersection or reflection region.

Figure 7 shows the process of SAGT for a shock reflection problem.
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FIG. 6. Procedure of sub-iteration and cycle.

a. Determination of shock intersection or reflection regions.The shock intersection or
reflection region is commonly spread over one to five cells. Thus the region is determined
by checking the difference between temporal shock front indexes. If the difference is less
than three for a giveni -index, the region is tagged as the area of shock intersection or
reflection.

For the shock intersection problem,

TSFI(n, i )− TSFI(n− 1, i ) ≤ 3. (35)

FIG. 7. SAGT process for the problem of shock reflection.
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For the shock reflection problem,

|TSFI(n, i )− jwall | ≤ 3. (36)

b. Interpolation of shock-aligned grid points in shock intersection or reflection region.
Owing to insufficient cells in this region, shock-aligned grid points in Step 1.d may be
calculated inaccurately. Thus the following modification is necessary.

For the indexi , the region of interest is taken asi − k to i + k with 1≤ k ≤ 2. Then,
the intersection or reflection point is recalculated by extrapolation using neighboring shock
positions of the indexi . It is the intersection point of two lines passing through the points
Spc,i−k−1 andSpc,i−k−2 for thenth andn+ 1th shock position, respectively. Other shock-
aligned grid points within the region of interest are interpolated using the newly determined
point and neighboring shock positions ofSpc,i−k−1 andSpc,i−k+1.

In addition, there are minor constraints for the fast convergence of shock position. In
Step 2.b where shock front indexes are readjusted to satisfy Eq. (33), the shock front
index of intersection or reflection must not change. Otherwise, the shock position may be
converged very slowly. Also, in Step 3.a, it is desirable to divide the computational domain
with respect to the intersection point and to apply the sub-iteration step separately, i.e., to
the upstream shock region first and then to the downstream shock region. This removes the
downstream propagation of upstream shock error and contributes to the fast convergence
of shock position in the whole domain.

3.3. Quality of Grid System by SAGT

The purpose of SAGT is toautomaticallyreconstruct a grid system that supports the
capturing of shock discontinuities with little numerical error. SAGT is independent of a
numerical scheme as long as it is able to capture a shock with only one cell interface in a
shock-aligned grid system, such as AUSMPW+. In addition, SAGT is independent of the
accuracy, robustness, or efficiency of a solver since it just provides a grid system.

The quality of a grid system by SAGT can be controlled by the threshold value in
Eqs. (17), (18), and (24). In the present computations, the maximum pressure difference of
5% (dpmax= 0.05) with respect to the pressure jump across a shock is allowed. More accu-
rate results can be obtained by reducing the threshold value at the expense of convergence
behavior. Figure 8 shows a typical spatial error distribution computed with the original grids
and shock-aligned grids. The error is defined as

error= F1/2 ,mass− 1

2
(ρLUL + ρRUR), (37)

whereF1/2 ,mass is the mass flux at a cell interface using the AUSMPW+ scheme, andU
is the velocity component normal to a cell interface. As shown in Figs. 8 and 9, the error
in the region of a shock is reduced more than one order of magnitude. Although the result
of shock-aligned grids shows some error at the kinked grid points, it does not compromise
solution accuracy as shown in Section 4.1. Moreover, the error may be reduced further with
a smallerdpmax.
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FIG. 8. Numerical error distributions.

3.4. Convergence Characteristics of SAGT

The convergence behavior of SAGT is checked at two steps as can be seen in Fig. 6:
one at the sub-iteration step that determines shock position and the other at the whole-
domain iteration step to examine the error by shocks in the whole computational domain.
For complete SAGT results, more than two cycles are necessary. Since shock position in

FIG. 9. Numerical errors along the line AB.
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FIG. 10. Error history in each sub-iteration.

FIG. 11. Error history in whole-domain iterations of each cycle.
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FIG. 12. Error history of the original grids.

the subiteration step is calculated based on the initial converged solution that contains the
error by shocks, the result after Cycle 1 may not be free from errors. Figures 10 to 12
show the typical convergence behavior of SAGT with grid type 1 in Section 4.1. Figure 10
shows the error history for each sub-iteration. In Cycle 1, four sub-iterations are carried
out, and two sub-iterations are carried out in Cycle 2. In calculating strong shocks, it is
occasionally seen that solutions cannot be converged because of high frequency errors,
as shown in sub-iterations of Cycle 2. The problematic region is commonly where the
maximum error occurs in the computational domain. The error can be eliminated by the
minute readjustment of grid points within the constraint of the threshold limits (dpmin and
dpmax), and convergence can be guaranteed. If the solution is not converged in previous the
sub-iteration, the pressure behind the shock in the problematic region is calculated again
as

pbs = (pj+n + dpmin · pf s)

1+ dpmin
, n = 0, im − 2< i < im + 2, (38)

whereim is thei -index where maximum error occurs in the previous sub-iteration.
Figure 11 shows the error history of the whole-domain iteration at each cycle. Although

the CFL number is restricted by 0.75 in the original grids, it can increase up to 3 in shock-
aligned grids since the error or instability by shocks is substantially reduced. It is noted
that the location of grid points does not change after Cycle 2 since all pressure distribu-
tions satisfy the constraint of the threshold limits (dpmin anddpmax) in the whole domain.
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FIG. 13. Difference of shock position between Cycle 1 and Cycle 2 alongi -index.

Figure 13 shows a delicate difference in shock position after Cycle 1 and Cycle 2, which
is due to the error contained in the initial converged solution for Cycle 1. Table I shows
the comparison of computational cost for SAGT with that of the original grids. Solutions
are converged to an error level of 10−6. Four cycles are executed for the complete imple-
mentation of SAGT. The extra computational cost is about 28% compared to the original
grids. The time needed to perform sub-iterations in Cycles 1 and 2 takes only about 3%
out of the total cost. The total cost is closely related to grid quality. As initial grid qual-
ity gets better, SAGT can be implemented much more efficiently. For example, if a high
quality grid is presented initially as in Fig. 14, the computational burden of SAGT is
negligible.

TABLE I

Comparison of Computational Cost

Time (s) Time/TimeOriginal (%)

Original Grid 3647 100.00
SAGT

Sub-iteration (Cycle 1) 22 0.60
Whole-domain iteration (Cycle 1) 68 1.86
Sub-iteration (Cycle 2) 28 0.76
Whole-domain iteration (Cycle 2) 313 8.58
Total time (Cycles 1–4) 1022 28.02
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FIG. 14. Shock-aligned grid system.

4. NUMERICAL RESULTS FOR SAGT WITH AUSMPW+

In this section, we present the computed results of SAGT combined with the AUSMPW+
scheme. Test cases cover from calorically perfect gas flows to equilibrium and nonequilib-
rium gas flows.

4.1. Hypersonic Flows over a Blunt Body

The free stream conditions are

• calorically perfect gas, • M∞ = 16.32, • p∞ =
82.95 N/m2,

• ρ∞ = 5.557× 10−3 kg/m3, • µ∞ = 3.369× 10−6 kg/m·s2, • T∞ = 52 K,
• Twall = 294.4 K, • Re= 1.4972× 105, • Pr = 0.72.

FIG. 15. Comparison of shock-aligned grids and original grids.
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FIG. 16. Various grid types around a blunt body.

The conditions for the computation are

• Time integration: CFL= 0.75, AF-ADI,
• Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter,

the number of grid point = 40× 60 (see Fig. 15),
• Boundary condition: constant temperature wall,
• Threshold values: dpmax= 0.05 anddpmin = 0.01.

As a standard test case that examines the effects of a strong shock wave and a large
gradient in a boundary layer, a hypersonic blunt body problem is chosen. The primary
concern is to handle the error due to computational grid and numerical instability. In the
original grids, the time step due to the CFL condition is severely restricted because of the
instability induced from a stiff gradient near a shock. Thus the CFL number cannot be
greater than 0.75. SAGT, however, relaxes the restriction substantially and the CFL number
can be increased to 3.0. The other advantage, which is more important, is that accurate
aerodynamic coefficients can be obtained almost irrespective of initial grid distribution.

FIG. 17. Comparison of pressure distributions.
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FIG. 18. Comparison of total enthalpy for grid type 1.

Figure 16 shows three types of grids around the blunt body depending on the grid quality
around the stagnation streamline: grid type 1 is normal to the stagnation streamline, grid
type 2 is greater than a 90 degree angle, and grid type 3 is smaller than a 90 degree angle.
Figures 17, 19, and 21 show that shocks are captured very crisply in shock-aligned grid
systems and the resolution is independent of initial grid distribution. In non-shock-aligned
grids, however, shocks are diffused over a few cells and influenced by an initial system.
Thus, the error intrinsically exists in converged solutions. Figures 18, 20, and 22 show the
total enthalpy error induced by the steady shock and its propagation on the downstream
side in each grid system. Figures 23 and 24 confirm that the surface heating rate is indeed
highly affected by a grid system, and the error from the shock actually influences the flow
physics at the wall. In grid type 2 the solution yields a higher total enthalpy in the stagnation

FIG. 19. Comparison of pressure distributions.
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FIG. 20. Comparison of total enthalpy for grid type 2.

region and the surface heating rate is overestimated. The opposite behavior can be observed
from the solution with grid type 3. In contrast, in shock-aligned grids, the total enthalpy is
preserved and the influence of grid distribution is eliminated. Mathematically, the type of the
governing equations in the stagnation region becomes amorphous because the convection
velocity approaches zero. Thus the order of error can be easily larger than a convection
term, and a little numerical error may influence the solution significantly, especially for
sensitive aerodynamic coefficients such as the surface heating rate.

Vorticity is also very sensitive to the error since it is the derivative of basic flow variables.
The relation between vorticity and the error in the shock region was investigated in detail by
Lee and Zhong using accurate shock-capturing methods such as TVD and ENO schemes [1].
Aside from the accuracy issue of shock-capturing schemes in non-shock-aligned grids, they

FIG. 21. Comparison of pressure distributions.
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FIG. 22. Comparison of total enthalpy for grid type 3.

also observed that grid resolution and grid alignment seriously influence the production of
spurious post-shock oscillations. It was shown that grid refinement reduced the wavelength
of spurious oscillations but did not affect the amplitude significantly. Grid alignment, on
the other hand, substantially decreased the amplitude of spurious oscillations but did not
eliminate it completely. As a remedy, to remove the vorticity oscillations completely, a
shock-fitting technique was adopted. In the present work, we advocate the shock-capturing
approach because of its broad applicability, and we try to cure this problem by using a

FIG. 23. Comparison of surface heating rates for the original grid systems.
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FIG. 24. Comparison of surface heating rates for shock-aligned grid systems.

SAGT with AUSMPW+. Vorticity is calculated as∫∫∫
ω dV =

∫∫∫
∇ × V dV =

∮
V · ds (39)

ω = 1

V

(∫
v dx+

∫
u dy

)
, (40)

whereω is vorticity, V is the velocity vector, andV is a cell volume. Figure 25 shows

FIG. 25. Comparison of vorticity contours.
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FIG. 26. Comparison of vorticity contours.

the vorticity contours with 50 contour levels in the original grids (grid 1). As shown in
Fig. 27, they are highly oscillatory in the original grids while SAGT provides a remarkable
improvement. Even with SAGT, however, the result is not shown to be perfect. It is due to
the error induced at kinked grids of an initial grid system. Although the error is substantially
reduced in shock-aligned grids as shown in Fig. 9, a little remnant produces a noticeable
vorticity oscillation. Figures 26 and 28 show the results in a shock-aligned grid system with
different formulations for the numerical speed of sound. As can be seen in Fig. 14, the
final shock-aligned grids do not contain the change of grid connectivity since the quality
of the initial grids is good. The averaged speed of sound ofcs = (cL + cR)/2 is used for
Case 1, and the newly defined speed of sound (Eq. (13)) is used for Case 2. As a result,
Case 1 cannot support the capturing of an oblique shock in one cell interface. As can be seen
in Fig. 28, the choice of the speed of sound critically influences the vorticity distribution.
In Case 1, vorticity exhibits an oscillatory behavior in the shock region even in a shock-
aligned grid system because the numerical scheme adopted cannot capture a shock without
numerical error. Therefore, an accurate numerical scheme and grid reconstruction scheme
should be combined appropriately in order to treat this problem within the framework of a
shock-capturing method.

4.2. Reflection and Intersection of Shock Waves

The free stream conditions are

• calorically perfect gas, • M∞= 3.0, • wedge angle= 5◦.

The conditions for the computation are

• Time integration: CFL = 0.5, AF-ADI,
• Spatial discretization: AUSMPW+, 3rd-order MUSCL with Minmod limiter,

the number of grid point= 50× 30, 50× 45
(see Figs. 29 and 32),
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FIG. 27. Comparison of vorticity distributions in Grid 1 along line AB.

FIG. 28. Comparison of vorticity distributions in shock-aligned grid system along line AB.
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FIG. 29. Comparison of pressure distributions.

• Boundary condition: slip condition,
• Threshold values: dpmax= 0.01 anddpmin = 0.005.

In order to examine the flexibility and robustness of SAGT, the reflection and intersection
of shocks are investigated. These test problems are quite important since shock intersection

FIG. 30. Comparison of wall pressure distributions.
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FIG. 31. Comparison of shock position for shock reflection problem.

and reflection are very basic phenomena in the analysis of complex flow problems. As can
be seen in Figs. 29 and 30, the oblique shock is captured through eight cell interfaces in
the original grids, while it is captured over only one cell interface in shock-aligned grids.
Figures 30 and 31 confirm that the calculated shock position is identical to the exact solu-
tion. In case of shock intersection, similar performance can be observed from the results of
Figs. 33 to 35. This example supports the fact that SAGT can be applied to flows involving
complex shock interaction.

4.3. Equilibrium and Nonequilibrium Flows around a Cylinder

The free stream conditions are

• equilibrium and nonequilibrium gas,• M∞ = 15, • p∞ = 663.41 N/m2,
• ρ∞ = 9.8874× 10−3 kg/m3, • µ∞ = 1.514× • T∞ = 233.75 K,

10−5 kg/m· s2,
• Twall = 1168.7 K, • Re= 2.0× 105.

FIG. 32. Grid systems for shock intersection problem.
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FIG. 33. Comparison of pressure distributions for shock intersection problem.

The conditions for the computation are

• Time integration: CFL= 0.5, LU-SGS,
• Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter,

the number of grid point= 80× 55 (see Fig. 36),
• Boundary condition: constant temperature wall (fully catalytic wall),
• Threshold values: dpmax= 0.05 anddpmin = 0.01.

Figure 36 is the result of SAGT applied to equilibrium and nonequilibrium flows and
shows high resolution in capturing the bow shock. The robustness of SAGT can be observed
again in Fig. 37. It is difficult to compare shock positions of the two-temperature model
with those of the four-temperature model because of the delicate difference. However, by
applying SAGT, the minute difference of shock positions could be obtained directly. Even
though the source term of the governing equations in nonequilibrium gas produces the
broad area of shock transition, it is observed that SAGT is still available in the highly
nonequilibrium region.

FIG. 34. Pressure distributions atx = 1.305.
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FIG. 35. Comparison of shock position for shock intersection problem.

FIG. 36. Grid system and pressure distributions around a blunt cone.
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FIG. 37. Comparison of shock positions for various gas models.

4.4. Nonequilibrium Flow around a Blunt Cone

This test case is for the comparison of a computed shock position with the experimental
data in the ballistic range. The free stream conditions are

• nonequilibrium gas, • u∞ = 3.63 km/s, • p∞ = 2400 N/m2,
• T∞ = 293 K, • R= 0.007 m, • axisymmetric flow.

The conditions for the computation are

• Time integration: CFL= 0.5, LU-SGS,
• Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter, the

number of grid point= 150× 40,
• Boundary condition: slip condition,
• Threshold values: dpmax= 0.05 anddpmin = 0.01.

Figures 38 and 39 show the standing shock distance computed by SAGT with AUSMPW+,
which agrees very well with experimental data. Again, the oblique shock is not diffused and
captured over only one cell interface. This confirms again the accuracy of the numerical
solution based on SAGT and the speed of sound of Eqs. (12) and (13).

4.5. Nonequilibrium Flow around a Double Cone

This test case involves the phenomenon of shock intersection and reflection of expansion
fan in a nonequilibrium gas. The free stream conditions are
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FIG. 38. Comparison of shock distance with experimental data.

FIG. 39. Comparison between computed result and experiment.
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FIG. 40. Pressure and density distributions around a double cone.

• nonequilibrium gas, • M∞ = 15, • p∞ = 663.41 N/m2,
• ρ∞ = 9.8874× 10−3 • µ∞ = 1.514× 10−5 kg/m· s2, • T∞ = 233.75 K,

kg/m3,
• Twall = 1168.7 K, • Re= 2.0× 105, • axisymmetric flow.

The conditions for the computation are as follows:

• Time integration: CFL= 0.5, LU-SGS,
• Spatial discretization: AUSMPW+, 3rd-order MUSCL with minmod limiter, the

number of grid point= 150× 60,
• Boundary condition: constant temperature wall (fully catalytic wall),
• Threshold values: dpmax= 0.05 anddpmin = 0.01.

The comparison of complex flow structure is shown in Fig. 40. By removing the numeri-
cal error near the shock intersection region, the shear layer developing from the intersection
point is computed more accurately. Although SAGT can be applied to various shock interac-
tion problems, it might have a limited applicability in problems with very complex physical
phenomena compared to the number of grid points. For example, in the region where a
shock and expansion fan coexist very closely, such as for separation bubbles caused by
shock/boundary interaction, it is difficult to judge the shock range in a coarse grid sys-
tem (Steps 1.a and 1.b in Section 3.2.1). As a result, the shock position may not be easily
converged. Of course, if grid points are numerous enough, there is no difficulty.

4.6. Equilibrium Shock Wave/Shock Wave Interaction (Type IV)

The free stream conditions are

• equilibrium gas, • M∞ = 16.33, • p∞ = 88.003 N/m2,
• ρ∞ = 5.4656× 10−3 • T∞ = 52.27 K, • Twall = 294.44 K,

kg/m3,
• Re= 1.45× 105, • impinging shock angle= 13◦.

The conditions for the computation are

• Time integration: CFL= 0.5, AF-ADI,
• Spatial discretization: AUSMPW+, the number of grid point= 161× 65,
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FIG. 41. Density distribution of shock/shock interaction (Type IV) in the original grid system.

FIG. 42. Density distribution of shock/shock interaction (Type IV) in the shock-aligned grid system.
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• Boundary condition: constant temperature wall,
• Threshold values: dpmax= 0.1 anddpmin = 0.01.

Flow conditions are the same as in Ref. [6]. Type IV shock/shock interaction phenomena
are observed when a shock is impinging on a subsonic region behind a bow shock. This
type of interaction has been shown to be inherently unsteady in perfect gas flows [7]. Even
in equilibrium gas flows, a fully steady case has not been reported yet. Although SAGT is
essentially for steady problems, it can be applied to this case successfully since the flow
unsteadiness is relatively weak. Owing to unsteady shock motion,dpmax is chosen to 0.1.
Figures 41 and 42 show more closely the results of SAGT for the complex shock structure,
especially the transmitted shock. These results also suggest that SAGT can be extended to
fully unsteady problems with further improvement by newly defining the speed of sound at
a cell interface.

5. CONCLUSIONS

As an accurate, robust, and efficient grid reconstruction scheme to compute hypersonic
flows, the SAGT (shock-aligned grid technique) is proposed. SAGT is a method to recon-
struct a grid systemautomatically, which supports the capturing of a shock with minimal
numerical error. With the advantage of the AUSMPW+ scheme that is able to capture normal
or oblique shocks through only one cell interface in shock-aligned grids, SAGT provides a
very accurate shock resolution and a solution that is not influenced by initial grid distribu-
tion. Also, the time step limit resulting from the CFL condition is considerably relieved by
removing the shock-induced error in non-shock-aligned grids. Aerodynamic coefficients
or higher order derivative terms that are highly sensitive to a little numerical error, such
as surface heating rate or vorticity, can also be accurately calculated without unphysical
oscillations. These advantages are thought to be important in computing problems involving
strong shocks or physical oscillations. Numerous computed results confirm that SAGT is
robust enough to be applied in equilibrium and nonequilibrium flows.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the BK-21 Program for Mechanical and Aerospace
Engineering Research at Seoul National University and a grant from the Korea Science and Engineering Foundation
(Grant 98-0200-14–01-3). The authors appreciate the referees for their careful and rigorous comments on this
manuscript.

REFERENCES

1. T. K. Lee and X. Zhong, Spurious numerical oscillations in simulation of supersonic flows using shock-
capturing schemes,AIAA J.37(3), 313 (1999).

2. S. Srinivasan, J. C. Tannehill, and K. J. Weilmuenster,Simplified Curve Fits for the Thermodynamic Properties
of Equilibrium Air, NASA RP-1181 (Aug. 1987).

3. R. N. Gupta, K. P. Lee, R. A. Thompson, and J. M. Yos,Calculations and Curve Fits of Thermodynamic and
Transport Properties for Equilibrium Air to 30000 K, NASA RP-1260 (1991).

4. T. K. S. Murthy, Computational Methods in Hypersonic Aerodynamics(Kluwer Academic, Dordrecht,
1991).

5. C. Park, Review of chemical-kinetic problems of future NASA missions, I: Earth Entries,J. Thermophys.
Heat Transfer7(3), 385 (1993).



SHOCK-ALIGNED GRID TECHNIQUE 119

6. R. K. Prabhu, J. R. Stewart, and R. R. Thareja,Shock Interference Studies on a Circular Cylinder at Mach
16, Technical Paper 90-0606 (AIAA Press, Washington, DC, 1990).

7. G. H. Furumoto and X. Zhong,Numerical Simulation of Viscous Unsteady Type IV Shock–Shock Inter-
action with Thermochemical Nonequilibrium, Technical Paper 97-0982 (AIAA Press, Washington, DC,
1997).

8. K. H. Kim, C. Kim, and O. Rho,Accurate Computations of Hypersonic Flows Using AUSMPW+ Scheme and
Shock-Aligned Grid Technique, Technical Paper 98-2442 (AIAA Press, Washington, DC, 1998).

9. K. H. Kim and O. H. Rho, An improvement of AUSM schemes by introducing the pressure-based weight
functions,Comput. Fluids27(3), 311 (1998).

10. C. Hirsh,Numerical Computation of Internal and External Flows, Vols. 1, 2 (Wiley, New York, 1990).

11. H. C. Yee, G. H. Kolpfer, and J. L. Montague,High-Resolution Shock Capturing Schemes for Inviscid and
Viscous Hypersonic Flows, NASA TM 101088 (1989).

12. J. V. Rosendale,Floating Shock Fitting Via Lagrangian Adaptive Meshes, Technical Paper 95-1721 (AIAA
Press, Washington, DC, 1995).


	1. INTRODUCTION
	2. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATIONS
	3. SHOCK-ALIGNED GRID TECHNIQUE
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	TABLE I
	FIG. 14.

	4. NUMERICAL RESULTS FOR SAGT WITH AUSMPW+
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.
	FIG. 24.
	FIG. 25.
	FIG. 26.
	FIG. 27.
	FIG. 28.
	FIG. 29.
	FIG. 30.
	FIG. 31.
	FIG. 32.
	FIG. 33.
	FIG. 34.
	FIG. 35.
	FIG. 36.
	FIG. 37.
	FIG. 38.
	FIG. 39.
	FIG. 40.
	FIG. 41.
	FIG. 42.

	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

